We propose an efficient semi-Lagrangian Characteristic Mapping (CM) method for solving the three-dimensional (3D) incompressible Euler equations. This method evolves advected quantities by discretizing the flow map associated with the velocity field. Using the properties of the Lie group of volume preserving diffeomorphisms SDiff, long-time deformations are computed from a composition of short-time submaps which can be accurately evolved on coarse grids. This method is a fundamental extension to the CM method for two-dimensional incompressible Euler equations [51]. We take a geometric approach in the 3D case where the vorticity is not a scalar advected quantity, but can be computed as a differential 2-form through the pullback of the initial condition by the characteristic map. This formulation is based on the Kelvin circulation theorem and gives point-wise a Lagrangian description of the vorticity field. We demonstrate through numerical experiments the validity of the method and show that energy is not dissipated through artificial viscosity and small scales of the solution are preserved. We provide error estimates and numerical convergence tests showing that the method is globally third-order accurate.
This work proposes a new stabilized $P_1\times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressure-robust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity is shown. For the Navier--Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element method. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated for competitiveness on several benchmark problems in 2 and 3 dimensional space.
Event cameras trigger events asynchronously and independently upon a sufficient change of the logarithmic brightness level. The neuromorphic sensor has several advantages over standard cameras including low latency, absence of motion blur, and high dynamic range. Event cameras are particularly well suited to sense motion dynamics in agile scenarios. We propose the continuous event-line constraint, which relies on a constant-velocity motion assumption as well as trifocal tensor geometry in order to express a relationship between line observations given by event clusters as well as first-order camera dynamics. Our core result is a closed-form solver for up-to-scale linear camera velocity {with known angular velocity}. Nonlinear optimization is adopted to improve the performance of the algorithm. The feasibility of the approach is demonstrated through a careful analysis on both simulated and real data.
In this paper, we use an implicit two-derivative deferred correction time discretization approach and combine it with a spatial discretization of the discontinuous Galerkin spectral element method to solve (non-)linear PDEs. The resulting numerical method is high order accurate in space and time. As the novel scheme handles two time derivatives, the spatial operator for both derivatives has to be defined. This results in an extended system matrix of the scheme. We analyze this matrix regarding possible simplifications and an efficient way to solve the arising (non-)linear system of equations. It is shown how a carefully designed preconditioner and a matrix-free approach allow for an efficient implementation and application of the novel scheme. For both, linear advection and the compressible Euler equations, up to eighth order of accuracy in time is shown. Finally, it is illustrated how the method can be used to approximate solutions to the compressible Navier-Stokes equations.
Neural Radiance Fields (NeRF) are able to reconstruct scenes with unprecedented fidelity, and various recent works have extended NeRF to handle dynamic scenes. A common approach to reconstruct such non-rigid scenes is through the use of a learned deformation field mapping from coordinates in each input image into a canonical template coordinate space. However, these deformation-based approaches struggle to model changes in topology, as topological changes require a discontinuity in the deformation field, but these deformation fields are necessarily continuous. We address this limitation by lifting NeRFs into a higher dimensional space, and by representing the 5D radiance field corresponding to each individual input image as a slice through this "hyper-space". Our method is inspired by level set methods, which model the evolution of surfaces as slices through a higher dimensional surface. We evaluate our method on two tasks: (i) interpolating smoothly between "moments", i.e., configurations of the scene, seen in the input images while maintaining visual plausibility, and (ii) novel-view synthesis at fixed moments. We show that our method, which we dub HyperNeRF, outperforms existing methods on both tasks. Compared to Nerfies, HyperNeRF reduces average error rates by 4.1% for interpolation and 8.6% for novel-view synthesis, as measured by LPIPS. Additional videos, results, and visualizations are available at //hypernerf.github.io.
In this work, we are concerned with a Fokker-Planck equation related to the nonlinear noisy leaky integrate-and-fire model for biological neural networks which are structured by the synaptic weights and equipped with the Hebbian learning rule. The equation contains a small parameter $\varepsilon$ separating the time scales of learning and reacting behavior of the neural system, and an asymptotic limit model can be derived by letting $\varepsilon\to 0$, where the microscopic quasi-static states and the macroscopic evolution equation are coupled through the total firing rate. To handle the endowed flux-shift structure and the multi-scale dynamics in a unified framework, we propose a numerical scheme for this equation that is mass conservative, unconditionally positivity preserving, and asymptotic preserving. We provide extensive numerical tests to verify the schemes' properties and carry out a set of numerical experiments to investigate the model's learning ability, and explore the solution's behavior when the neural network is excitatory.
We consider the online search problem in which a server starting at the origin of a $d$-dimensional Euclidean space has to find an arbitrary hyperplane. The best-possible competitive ratio and the length of the shortest curve from which each point on the $d$-dimensional unit sphere can be seen are within a constant factor of each other. We show that this length is in $\Omega(d)\cap O(d^{3/2})$.
The accelerated weight histogram (AWH) algorithm is an iterative extended ensemble algorithm, developed for statistical physics and computational biology applications. It is used to estimate free energy differences and expectations with respect to Gibbs measures. The AWH algorithm is based on iterative updates of a design parameter, which is closely related to the free energy, obtained by matching a weight histogram with a specified target distribution. The weight histogram is constructed from samples of a Markov chain on the product of the state space and parameter space. In this paper almost sure convergence of the AWH algorithm is proved, for estimating free energy differences as well as estimating expectations with adaptive ergodic averages. The proof is based on identifying the AWH algorithm as a stochastic approximation and studying the properties of the associated limit ordinary differential equation.
In this work, we develop a high-order pressure-robust method for the rotation form of the stationary incompressible Navier-Stokes equations. The original idea is to change the velocity test functions in the discretization of trilinear and right hand side terms by using an H(div)-conforming velocity reconstruction operator. In order to match the rotation form and error analysis, a novel skew-symmetric discrete trilinear form containing the reconstruction operator is proposed, in which not only the velocity test function is changed. The corresponding well-posed discrete weak formulation stems straight from the classical inf-sup stable mixed conforming high-order finite elements, and it is proven to achieve the pressure-independent velocity errors. Optimal convergence rates of H1, L2-error for the velocity and L2-error for the Bernoulli pressure are completely established. Adequate numerical experiments are presented to demonstrate the theoretical results and the remarkable performance of the proposed method.
We demonstrate an adaptive sampling approach for computing the probability of a rare event for a set of three-dimensional airplane geometries under various flight conditions. We develop a fully automated method to generate parameterized airplanes geometries and create volumetric mesh for viscous CFD solution. With the automatic geometry and meshing, we perform the adaptive sampling procedure to compute the probability of the rare event. We show that the computational cost of our adaptive sampling approach is hundreds of times lower than a brute-force Monte Carlo method.
The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.