亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Event cameras trigger events asynchronously and independently upon a sufficient change of the logarithmic brightness level. The neuromorphic sensor has several advantages over standard cameras including low latency, absence of motion blur, and high dynamic range. Event cameras are particularly well suited to sense motion dynamics in agile scenarios. We propose the continuous event-line constraint, which relies on a constant-velocity motion assumption as well as trifocal tensor geometry in order to express a relationship between line observations given by event clusters as well as first-order camera dynamics. Our core result is a closed-form solver for up-to-scale linear camera velocity {with known angular velocity}. Nonlinear optimization is adopted to improve the performance of the algorithm. The feasibility of the approach is demonstrated through a careful analysis on both simulated and real data.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

We propose an accurate and robust multi-modal sensor fusion framework, MetroLoc, towards one of the most extreme scenarios, the large-scale metro vehicle localization and mapping. MetroLoc is built atop an IMU-centric state estimator that tightly couples light detection and ranging (LiDAR), visual, and inertial information with the convenience of loosely coupled methods. The proposed framework is composed of three submodules: IMU odometry, LiDAR-inertial odometry (LIO), and Visual-inertial odometry (VIO). The IMU is treated as the primary sensor, which achieves the observations from LIO and VIO to constrain the accelerometer and gyroscope biases. Compared to previous point-only LIO methods, our approach leverages more geometry information by introducing both line and plane features into motion estimation. The VIO also utilizes the environmental structure information by employing both lines and points. Our proposed method has been extensively tested in the long-during metro environments with a maintenance vehicle. Experimental results show the system more accurate and robust than the state-of-the-art approaches with real-time performance. Besides, we develop a series of Virtual Reality (VR) applications towards efficient, economical, and interactive rail vehicle state and trackside infrastructure monitoring, which has already been deployed to an outdoor testing railroad.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

Inferring inductive invariants is one of the main challenges of formal verification. The theory of abstract interpretation provides a rich framework to devise invariant inference algorithms. One of the latest breakthroughs in invariant inference is property-directed reachability (PDR), but the research community views PDR and abstract interpretation as mostly unrelated techniques. This paper shows that, surprisingly, propositional PDR can be formulated as an abstract interpretation algorithm in a logical domain. More precisely, we define a version of PDR, called $\Lambda$-PDR, in which all generalizations of counterexamples are used to strengthen a frame. In this way, there is no need to refine frames after their creation, because all the possible supporting facts are included in advance. We analyze this algorithm using notions from Bshouty's monotone theory, originally developed in the context of exact learning. We show that there is an inherent overapproximation between the algorithm's frames that is related to the monotone theory. We then define a new abstract domain in which the best abstract transformer performs this overapproximation, and show that it captures the invariant inference process, i.e., $\Lambda$-PDR corresponds to Kleene iterations with the best transformer in this abstract domain. We provide some sufficient conditions for when this process converges in a small number of iterations, with sometimes an exponential gap from the number of iterations required for naive exact forward reachability. These results provide a firm theoretical foundation for the benefits of how PDR tackles forward reachability.

We consider the problem of estimating a $d$-dimensional discrete distribution from its samples observed under a $b$-bit communication constraint. In contrast to most previous results that largely focus on the global minimax error, we study the local behavior of the estimation error and provide \emph{pointwise} bounds that depend on the target distribution $p$. In particular, we show that the $\ell_2$ error decays with $O\left(\frac{\lVert p\rVert_{1/2}}{n2^b}\vee \frac{1}{n}\right)$ (In this paper, we use $a\vee b$ and $a \wedge b$ to denote $\max(a, b)$ and $\min(a,b)$ respectively.) when $n$ is sufficiently large, hence it is governed by the \emph{half-norm} of $p$ instead of the ambient dimension $d$. For the achievability result, we propose a two-round sequentially interactive estimation scheme that achieves this error rate uniformly over all $p$. Our scheme is based on a novel local refinement idea, where we first use a standard global minimax scheme to localize $p$ and then use the remaining samples to locally refine our estimate. We also develop a new local minimax lower bound with (almost) matching $\ell_2$ error, showing that any interactive scheme must admit a $\Omega\left( \frac{\lVert p \rVert_{{(1+\delta)}/{2}}}{n2^b}\right)$ $\ell_2$ error for any $\delta > 0$. The lower bound is derived by first finding the best parametric sub-model containing $p$, and then upper bounding the quantized Fisher information under this model. Our upper and lower bounds together indicate that the $\mathcal{H}_{1/2}(p) = \log(\lVert p \rVert_{{1}/{2}})$ bits of communication is both sufficient and necessary to achieve the optimal (centralized) performance, where $\mathcal{H}_{{1}/{2}}(p)$ is the R\'enyi entropy of order $2$. Therefore, under the $\ell_2$ loss, the correct measure of the local communication complexity at $p$ is its R\'enyi entropy.

This paper is devoted to condition numbers of the total least squares problem with linear equality constraint (TLSE). With novel limit techniques, closed formulae for normwise, mixed and componentwise condition numbers of the TLSE problem are derived. Computable expressions and upper bounds for these condition numbers are also given to avoid the costly Kronecker product-based operations. The results unify the ones for the TLS problem. For TLSE problems with equilibratory input data, numerical experiments illustrate that normwise condition number-based estimate is sharp to evaluate the forward error of the solution, while for sparse and badly scaled matrices, mixed and componentwise condition numbers-based estimates are much tighter.

In this paper, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. {\it A~priori} error estimates of optimal order are derived for velocity and pressure in the energy norm and the $L^2$-norm, respectively. Moreover, a reliable and efficient {\it a~posteriori} error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix-Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.

Motivated by A/B/n testing applications, we consider a finite set of distributions (called \emph{arms}), one of which is treated as a \emph{control}. We assume that the population is stratified into homogeneous subpopulations. At every time step, a subpopulation is sampled and an arm is chosen: the resulting observation is an independent draw from the arm conditioned on the subpopulation. The quality of each arm is assessed through a weighted combination of its subpopulation means. We propose a strategy for sequentially choosing one arm per time step so as to discover as fast as possible which arms, if any, have higher weighted expectation than the control. This strategy is shown to be asymptotically optimal in the following sense: if $\tau_\delta$ is the first time when the strategy ensures that it is able to output the correct answer with probability at least $1-\delta$, then $\mathbb{E}[\tau_\delta]$ grows linearly with $\log(1/\delta)$ at the exact optimal rate. This rate is identified in the paper in three different settings: (1) when the experimenter does not observe the subpopulation information, (2) when the subpopulation of each sample is observed but not chosen, and (3) when the experimenter can select the subpopulation from which each response is sampled. We illustrate the efficiency of the proposed strategy with numerical simulations on synthetic and real data collected from an A/B/n experiment.

We present monostatic sampling methods for limited-aperture scattering problems in two dimensions. The direct sampling method (DSM) is well known to provide a robust, stable, and fast numerical scheme for imaging inhomogeneities from multistatic measurements even with only one or two incident fields. However, in practical applications, monostatic measurements in limited-aperture configuration are frequently encountered. A monostatic sampling method (MSM) was studied in full-aperture configuration in recent literature. In this paper, we develop MSM in limited-aperture configuration and derive an asymptotic formula of the corresponding indicator function. Based on the asymptotic formula, we then analyze the imaging performance of the proposed method depending on the range of measurement directions and the geometric, material properties of inhomogeneities. Furthermore, we propose a modified numerical scheme with multi-frequency measurements that improve imaging performance, especially for small anomalies. Numerical simulations are presented to validate the analytical results.

In numerical simulations of complex flows with discontinuities, it is necessary to use nonlinear schemes. The spectrum of the scheme used have a significant impact on the resolution and stability of the computation. Based on the approximate dispersion relation method, we combine the corresponding spectral property with the dispersion relation preservation proposed by De and Eswaran (J. Comput. Phys. 218 (2006) 398-416) and propose a quasi-linear dispersion relation preservation (QL-DRP) analysis method, through which the group velocity of the nonlinear scheme can be determined. In particular, we derive the group velocity property when a high-order Runge-Kutta scheme is used and compare the performance of different time schemes with QL-DRP. The rationality of the QL-DRP method is verified by a numerical simulation and the discrete Fourier transform method. To further evaluate the performance of a nonlinear scheme in finding the group velocity, new hyperbolic equations are designed. The validity of QL-DRP and the group velocity preservation of several schemes are investigated using two examples of the equation for one-dimensional wave propagation and the new hyperbolic equations. The results show that the QL-DRP method integrated with high-order time schemes can determine the group velocity for nonlinear schemes and evaluate their performance reasonably and efficiently.

This paper presents a novel method to generate spatial constraints for motion planning in dynamic environments. Motion planning methods for autonomous driving and mobile robots typically need to rely on the spatial constraints imposed by a map-based global planner to generate a collision-free trajectory. These methods may fail without an offline map or where the map is invalid due to dynamic changes in the environment such as road obstruction, construction, and traffic congestion. To address this problem, triangulation-based methods can be used to obtain a spatial constraint. However, the existing methods fall short when dealing with dynamic environments and may lead the motion planner to an unrecoverable state. In this paper, we propose a new method to generate a sequence of channels across different triangulation mesh topologies to serve as the spatial constraints. This can be applied to motion planning of autonomous vehicles or robots in cluttered, unstructured environments. The proposed method is evaluated and compared with other triangulation-based methods in synthetic and complex scenarios collected from a real-world autonomous driving dataset. We have shown that the proposed method results in a more stable, long-term plan with a higher task completion rate, faster arrival time, a higher rate of successful plans, and fewer collisions compared to existing methods.

北京阿比特科技有限公司