For the first time, a fully-coupled Harmonic Balance method is developed for the forced response of turbomachinery blades. The method is applied to a state-of-the-art model of a turbine bladed disk with interlocked shrouds subjected to wake-induced loading. The recurrent opening and closing of the pre-loaded shroud contact causes a softening effect, leading to turning points in the amplitude-frequency curve near resonance. Therefore, the coupled solver is embedded into a numerical path continuation framework. Two variants are developed: the coupled continuation of the solution path, and the coupled re-iteration of selected solution points. While the re-iteration variant is slightly more costly per solution point, it has the important advantage that it can be run completely in parallel, which substantially reduces the wall clock time. It is shown that wake- and vibration-induced flow fields do not linearly superimpose, leading to a severe underestimation of the resonant vibration level by the influence-coefficient-based state-of-the-art methods (which rely on this linearity assumption).
In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes (PDMPs). In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. We develop, based upon the approach in [20], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameter of that algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
Industry 4.0 has brought to attention the need for a connected, flexible, and autonomous production environment. The New Radio (NR)-sidelink, which was introduced by the third-generation partnership project (3GPP) in Release 16, can be particularly helpful for factories that need to facilitate cooperative and close-range communication. Automated Guided Vehicles (AGVs) are important for material handling and carriage within these environments, and using NR-sidelink communication can further enhance their performance. An efficient resource allocation mechanism is required to ensure reliable communication and avoid interference between AGVs and other wireless systems in the factory using NR-sidelink. This work evaluates the 3GPP standardized resource allocation algorithm for NR-sidelink for a use case of cooperative carrying AGVs. We suggest further improvements that are tailored to the quality of service (QoS) requirements of an indoor factory communication scenario with cooperative AGVs.The use of NR-sidelink communication has the potential to help meet the QoS requirements for different Industry 4.0 use cases. This work can be a foundation for further improvements in NR-sidelink in 3GPP Release 18 and beyond.
In the realm of autonomous mobile robots, safe navigation through unpaved outdoor environments remains a challenging task. Due to the high-dimensional nature of sensor data, extracting relevant information becomes a complex problem, which hinders adequate perception and path planning. Previous works have shown promising performances in extracting global features from full-sized images. However, they often face challenges in capturing essential local information. In this paper, we propose Crop-LSTM, which iteratively takes cropped image patches around the current robot's position and predicts the future position, orientation, and bumpiness. Our method performs local feature extraction by paying attention to corresponding image patches along the predicted robot trajectory in the 2D image plane. This enables more accurate predictions of the robot's future trajectory. With our wheeled mobile robot platform Raicart, we demonstrated the effectiveness of Crop-LSTM for point-goal navigation in an unpaved outdoor environment. Our method enabled safe and robust navigation using RGBD images in challenging unpaved outdoor terrains. The summary video is available at //youtu.be/iIGNZ8ignk0.
The Potential Outcome Framework (POF) plays a prominent role in the field of causal inference. Most causal inference models based on the POF (CIMs-POF) are designed for eliminating confounding bias and default to an underlying assumption of Confounding Covariates. This assumption posits that the covariates consist solely of confounders. However, the assumption of Confounding Covariates is challenging to maintain in practice, particularly when dealing with high-dimensional covariates. While certain methods have been proposed to differentiate the distinct components of covariates prior to conducting causal inference, the consequences of treating non-confounding covariates as confounders remain unclear. This ambiguity poses a potential risk when conducting causal inference in practical scenarios. In this paper, we present a unified graphical framework for the CIMs-POF, which greatly enhances the comprehension of these models' underlying principles. Using this graphical framework, we quantitatively analyze the extent to which the inference performance of CIMs-POF is influenced when incorporating various types of non-confounding covariates, such as instrumental variables, mediators, colliders, and adjustment variables. The key findings are: in the task of eliminating confounding bias, the optimal scenario is for the covariates to exclusively encompass confounders; in the subsequent task of inferring counterfactual outcomes, the adjustment variables contribute to more accurate inferences. Furthermore, extensive experiments conducted on synthetic datasets consistently validate these theoretical conclusions.
This paper describes how to `Free the Qubit' for art, by creating standalone quantum musical effects and instruments. Previously released quantum simulator code for an ARM-based Raspberry Pi Pico embedded microcontroller is utilised here, and several examples are built demonstrating different methods of utilising embedded resources: The first is a Quantum MIDI processor that generates additional notes for accompaniment and unique quantum generated instruments based on the input notes, decoded and passed through a quantum circuit in an embedded simulator. The second is a Quantum Distortion module that changes an instrument's raw sound according to a quantum circuit, which is presented in two forms; a self-contained Quantum Stylophone, and an effect module plugin called 'QubitCrusher' for the Korg Nu:Tekt NTS-1. This paper also discusses future work and directions for quantum instruments, and provides all examples as open source. This is, to the author's knowledge, the first example of embedded Quantum Simulators for Instruments of Music (another QSIM).
We present a method for balancing between the Local and Global Structures (LGS) in graph embedding, via a tunable parameter. Some embedding methods aim to capture global structures, while others attempt to preserve local neighborhoods. Few methods attempt to do both, and it is not always possible to capture well both local and global information in two dimensions, which is where most graph drawing live. The choice of using a local or a global embedding for visualization depends not only on the task but also on the structure of the underlying data, which may not be known in advance. For a given graph, LGS aims to find a good balance between the local and global structure to preserve. We evaluate the performance of LGS with synthetic and real-world datasets and our results indicate that it is competitive with the state-of-the-art methods, using established quality metrics such as stress and neighborhood preservation. We introduce a novel quality metric, cluster distance preservation, to assess intermediate structure capture. All source-code, datasets, experiments and analysis are available online.
We consider the problem of optimal unsignalized intersection management for continual streams of randomly arriving robots. This problem involves repeatedly solving different instances of a mixed integer program, for which the computation time using a naive optimization algorithm scales exponentially with the number of robots and lanes. Hence, such an approach is not suitable for real-time implementation. In this paper, we propose a solution framework that combines learning and sequential optimization. In particular, we propose an algorithm for learning a shared policy that given the traffic state information, determines the crossing order of the robots. Then, we optimize the trajectories of the robots sequentially according to that crossing order. This approach inherently guarantees safety at all times. We validate the performance of this approach using extensive simulations. Our approach, on average, significantly outperforms the heuristics from the literature. We also show through simulations that the computation time for our approach scales linearly with the number of robots. We further implement the learnt policies on physical robots with a few modifications to the solution framework to address real-world challenges and establish its real-time implementability.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.