In this paper, we propose a new algebraic attack on stream ciphers. Starting from the well-known attack due to Courtois and Meier, we design an attack especially effective against nonlinear filter generators. We test it on two toy stream ciphers and we show that the level of security of one of stream ciphers submitted to the NIST competition on Lightweight Cryptography, WG-PRNG, is less than that stated before now.
The approach taken by Gheorghiu, Gu and Pym in their paper on giving a Base-extension Semantics for Intuitionistic Multiplicative Linear Logic is an interesting adaptation of the work of Sandqvist for IPL to the substructural setting. What is particularly interesting is how naturally the move to the substructural setting provided a semantics for the multiplicative fragment of intuitionistic linear logic. Whilst ultimately the Gheorghiu, Gu and Pym used their foundations to provide a semantics for bunched implication logic, it begs the question, what of the rest of intuitionistic linear logic? In this paper, I present just such a semantics. This is particularly of interest as this logic has as a connective the bang, a modal connective. Capturing the inferentialist content of formulas marked with this connective is particularly challenging and a discussion is dedicated to this at the end of the paper.
In this paper, we construct and analyze new first- and second-order implicit-explicit (IMEX) schemes for the unsteady Navier-Stokes-Darcy model to describe the coupled free flow-porous media system, which is based on the scalar auxiliary variable (SAV) approach in time and finite element method in space. The constructed schemes are linear, only require solving a sequence of linear differential equations with constant coefficients at each time step, and can decouple the Navier-Stokes and Darcy systems. The unconditional stability of both the first- and second-order IMEX schemes can be derived for the coupled system equipped with the Lions interface condition, where the key point is that we should construct a new trilinear form to balance the fully explicit discretizations of the nonlinear terms in the complex system. We can also establish rigorous error estimates for the velocity and hydraulic head of the first-order scheme without any time step restriction. Numerical examples are presented to validate the proposed schemes.
In this paper, we present a robust and efficient multigrid solver based on an exponential-fitting discretization for 2D H(curl) convection-diffusion problems. By leveraging an exponential identity, we characterize the kernel of H(curl) convection-diffusion problems and design a suitable hybrid smoother. This smoother incorporates a lexicographic Gauss-Seidel smoother within a downwind type and smoothing over an auxiliary problem, corresponding to H(grad) convection-diffusion problems for kernel correction. We analyze the convergence properties of the smoothers and the two-level method using local Fourier analysis (LFA). The performance of the algorithms demonstrates robustness in both convection-dominated and diffusion-dominated cases.
We propose a novel algorithm for distributed stochastic gradient descent (SGD) with compressed gradient communication in the parameter-server framework. Our gradient compression technique, named flattened one-bit stochastic gradient descent (FO-SGD), relies on two simple algorithmic ideas: (i) a one-bit quantization procedure leveraging the technique of dithering, and (ii) a randomized fast Walsh-Hadamard transform to flatten the stochastic gradient before quantization. As a result, the approximation of the true gradient in this scheme is biased, but it prevents commonly encountered algorithmic problems, such as exploding variance in the one-bit compression regime, deterioration of performance in the case of sparse gradients, and restrictive assumptions on the distribution of the stochastic gradients. In fact, we show SGD-like convergence guarantees under mild conditions. The compression technique can be used in both directions of worker-server communication, therefore admitting distributed optimization with full communication compression.
We examine a mean-reverting Ornstein-Uhlenbeck process that perturbs an unknown Lipschitz-continuous drift and aim to estimate the drift's value at a predetermined time horizon by sampling the path of the process. Due to the time varying nature of the drift we propose an estimation procedure that involves an online, time-varying optimization scheme implemented using a stochastic gradient ascent algorithm to maximize the log-likelihood of our observations. The objective of the paper is to investigate the optimal sample size/rate for achieving the minimum mean square distance between our estimator and the true value of the drift. In this setting we uncover a trade-off between the correlation of the observations, which increases with the sample size, and the dynamic nature of the unknown drift, which is weakened by increasing the frequency of observation. The mean square error is shown to be non monotonic in the sample size, attaining a global minimum whose precise description depends on the parameters that govern the model. In the static case, i.e. when the unknown drift is constant, our method outperforms the arithmetic mean of the observations in highly correlated regimes, despite the latter being a natural candidate estimator. We then compare our online estimator with the global maximum likelihood estimator.
A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov chain Monte Carlo community for being a remarkably strong result. It is however also known for being a result that is notably difficult to establish. Indeed, one has to prove that the probability to reach a state $\mathbf{y}$ from a state $\mathbf{x}$, using a sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs $(\mathbf{x}, \mathbf{y})$ such that $\mathbf{x} \neq \mathbf{y}$. We provide in this paper a weaker version that does not require an inequality between the probabilities for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound, as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set. The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces with their Metropolis--Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others (and the reasons why are made clear). A quantitative study in a specific context of graphical-model simulation is also conducted.
We study three kinetic Langevin samplers including the Euler discretization, the BU and the UBU splitting scheme. We provide contraction results in $L^1$-Wasserstein distance for non-convex potentials. These results are based on a carefully tailored distance function and an appropriate coupling construction. Additionally, the error in the $L^1$-Wasserstein distance between the true target measure and the invariant measure of the discretization scheme is bounded. To get an $\varepsilon$-accuracy in $L^1$-Wasserstein distance, we show complexity guarantees of order $\mathcal{O}(\sqrt{d}/\varepsilon)$ for the Euler scheme and $\mathcal{O}(d^{1/4}/\sqrt{\varepsilon})$ for the UBU scheme under appropriate regularity assumptions on the target measure. The results are applicable to interacting particle systems and provide bounds for sampling probability measures of mean-field type.
Rough set is one of the important methods for rule acquisition and attribute reduction. The current goal of rough set attribute reduction focuses more on minimizing the number of reduced attributes, but ignores the spatial similarity between reduced and decision attributes, which may lead to problems such as increased number of rules and limited generality. In this paper, a rough set attribute reduction algorithm based on spatial optimization is proposed. By introducing the concept of spatial similarity, to find the reduction with the highest spatial similarity, so that the spatial similarity between reduction and decision attributes is higher, and more concise and widespread rules are obtained. In addition, a comparative experiment with the traditional rough set attribute reduction algorithms is designed to prove the effectiveness of the rough set attribute reduction algorithm based on spatial optimization, which has made significant improvements on many datasets.
We present Alljoined1, a dataset built specifically for EEG-to-Image decoding. Recognizing that an extensive and unbiased sampling of neural responses to visual stimuli is crucial for image reconstruction efforts, we collected data from 8 participants looking at 10,000 natural images each. We have currently gathered 46,080 epochs of brain responses recorded with a 64-channel EEG headset. The dataset combines response-based stimulus timing, repetition between blocks and sessions, and diverse image classes with the goal of improving signal quality. For transparency, we also provide data quality scores. We publicly release the dataset and all code at //linktr.ee/alljoined1.
In this paper, we present an implicit Crank-Nicolson finite element (FE) scheme for solving a nonlinear Schr\"odinger-type system, which includes Schr\"odinger-Helmholz system and Schr\"odinger-Poisson system. In our numerical scheme, we employ an implicit Crank-Nicolson method for time discretization and a conforming FE method for spatial discretization. The proposed method is proved to be well-posedness and ensures mass and energy conservation at the discrete level. Furthermore, we prove optimal $L^2$ error estimates for the fully discrete solutions. Finally, some numerical examples are provided to verify the convergence rate and conservation properties.