亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Differential privacy (DP) is a widely-accepted and widely-applied notion of privacy based on worst-case analysis. Often, DP classifies most mechanisms without external noise as non-private [Dwork et al., 2014], and external noises, such as Gaussian noise or Laplacian noise [Dwork et al., 2006], are introduced to improve privacy. In many real-world applications, however, adding external noise is undesirable and sometimes prohibited. For example, presidential elections often require a deterministic rule to be used [Liu et al., 2020], and small noises can lead to dramatic decreases in the prediction accuracy of deep neural networks, especially the underrepresented classes [Bagdasaryan et al., 2019]. In this paper, we propose a natural extension and relaxation of DP following the worst average-case idea behind the celebrated smoothed analysis [Spielman and Teng, 2004]. Our notion, the smoothed DP, can effectively measure the privacy leakage of mechanisms without external noises under realistic settings. We prove several strong properties of the smoothed DP, including composability, robustness to post-processing and etc. We proved that any discrete mechanism with sampling procedures is more private than what DP predicts. In comparison, many continuous mechanisms with sampling procedures are still non-private under smoothed DP. Experimentally, we first verified that the discrete sampling mechanisms are private in real-world elections. Then, we apply the smoothed DP notion on quantized gradient descent, which indicates some neural networks can be private without adding any extra noises. We believe that these results contribute to the theoretical foundation of realistic privacy measures beyond worst-case analysis.

相關內容

In this work, we study the generalization capability of algorithms from an information-theoretic perspective. It has been shown that the expected generalization error of an algorithm is bounded from above by a function of the relative entropy between the conditional probability distribution of the algorithm's output hypothesis, given the dataset with which it was trained, and its marginal probability distribution. We build upon this fact and introduce a mathematical formulation to obtain upper bounds on this relative entropy. Assuming that the data is discrete, we then develop a strategy using this formulation, based on the method of types and typicality, to find explicit upper bounds on the generalization error of stable algorithms, i.e., algorithms that produce similar output hypotheses given similar input datasets. In particular, we show the bounds obtained with this strategy for the case of $\epsilon$-DP and $\mu$-GDP algorithms.

$\ell_1$-penalized quantile regression is widely used for analyzing high-dimensional data with heterogeneity. It is now recognized that the $\ell_1$-penalty introduces non-negligible estimation bias, while a proper use of concave regularization may lead to estimators with refined convergence rates and oracle properties as the signal strengthens. Although folded concave penalized $M$-estimation with strongly convex loss functions have been well studied, the extant literature on quantile regression is relatively silent. The main difficulty is that the quantile loss is piecewise linear: it is non-smooth and has curvature concentrated at a single point. To overcome the lack of smoothness and strong convexity, we propose and study a convolution-type smoothed quantile regression with iteratively reweighted $\ell_1$-regularization. The resulting smoothed empirical loss is twice continuously differentiable and (provably) locally strongly convex with high probability. We show that the iteratively reweighted $\ell_1$-penalized smoothed quantile regression estimator, after a few iterations, achieves the optimal rate of convergence, and moreover, the oracle rate and the strong oracle property under an almost necessary and sufficient minimum signal strength condition. Extensive numerical studies corroborate our theoretical results.

The gamma-Pareto type I convolution (GPC type I) distribution, which has a power function tail, was recently shown to describe the disposition kinetics of metformin in dogs precisely and better than sums of exponentials. However, this had very long run times and lost precision for its functional values at long times following intravenous injection. An accelerated algorithm and its computer code is now presented comprising two separate routines for short and long times and which, when applied to the dog data, completes in approximately 3 minutes per case. The new algorithm is a more practical research tool. Potential pharmacokinetic applications are discussed.

The knockoff filter, recently developed by Barber and Candes, is an effective procedure to perform variable selection with a controlled false discovery rate (FDR). We propose a private version of the knockoff filter by incorporating Gaussian and Laplace mechanisms, and show that variable selection with controlled FDR can be achieved. Simulations demonstrate that our setting has reasonable statistical power.

Plausibility is a formalization of exact tests for parametric models and generalizes procedures such as Fisher's exact test. The resulting tests are based on cumulative probabilities of the probability density function and evaluate consistency with a parametric family while providing exact control of the $\alpha$ level for finite sample size. Model comparisons are inefficient in this approach. We generalize plausibility by incorporating weighing which allows to perform model comparisons. We show that one weighing scheme is asymptotically equivalent to the likelihood ratio test (LRT) and has finite sample guarantees for the test size under the null hypothesis unlike the LRT. We confirm theoretical properties in simulations that mimic the data set of our data application. We apply the method to a retinoblastoma data set and demonstrate a parent-of-origin effect. Weighted plausibility also has applications in high-dimensional data analysis and P-values for penalized regression models can be derived. We demonstrate superior performance as compared to a data-splitting procedure in a simulation study. We apply weighted plausibility to a high-dimensional gene expression, case-control prostate cancer data set. We discuss the flexibility of the approach by relating weighted plausibility to targeted learning, the bootstrap, and sparsity selection.

Classic mechanism design often assumes that a bidder's action is restricted to report a type or a signal, possibly untruthfully. In today's digital economy, bidders are holding increasing amount of private information about the auctioned items. And due to legal or ethical concerns, they would demand to reveal partial but truthful information, as opposed to report untrue signal or misinformation. To accommodate such bidder behaviors in auction design, we propose and study a novel mechanism design setup where each bidder holds two kinds of information: (1) private \emph{value type}, which can be misreported; (2) private \emph{information variable}, which the bidder may want to conceal or partially reveal, but importantly, \emph{not} to misreport. We show that in this new setup, it is still possible to design mechanisms that are both \emph{Incentive and Information Compatible} (IIC). We develop two different black-box transformations, which convert any mechanism $\mathcal{M}$ for classic bidders to a mechanism $\mathcal{M}'$ for strategically reticent bidders, based on either outcome of expectation or expectation of outcome, respectively. We identify properties of the original mechanism $\mathcal{M}$ under which the transformation leads to IIC mechanisms $\mathcal{M}'$. Interestingly, as corollaries of these results, we show that running VCG with expected bidder values maximizes welfare whereas the mechanism using expected outcome of Myerson's auction maximizes revenue. Finally, we study how regulation on the auctioneer's usage of information may lead to more robust mechanisms.

Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users. However, an adversary may still be able to infer the private training data by attacking the released model. Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models. In this paper, we investigate a utility enhancement scheme based on Laplacian smoothing for differentially private federated learning (DP-Fed-LS), where the parameter aggregation with injected Gaussian noise is improved in statistical precision without losing privacy budget. Our key observation is that the aggregated gradients in federated learning often enjoy a type of smoothness, i.e. sparsity in the graph Fourier basis with polynomial decays of Fourier coefficients as frequency grows, which can be exploited by the Laplacian smoothing efficiently. Under a prescribed differential privacy budget, convergence error bounds with tight rates are provided for DP-Fed-LS with uniform subsampling of heterogeneous Non-IID data, revealing possible utility improvement of Laplacian smoothing in effective dimensionality and variance reduction, among others. Experiments over MNIST, SVHN, and Shakespeare datasets show that the proposed method can improve model accuracy with DP-guarantee and membership privacy under both uniform and Poisson subsampling mechanisms.

In the recent decades, the advance of information technology and abundant personal data facilitate the application of algorithmic personalized pricing. However, this leads to the growing concern of potential violation of privacy due to adversarial attack. To address the privacy issue, this paper studies a dynamic personalized pricing problem with \textit{unknown} nonparametric demand models under data privacy protection. Two concepts of data privacy, which have been widely applied in practices, are introduced: \textit{central differential privacy (CDP)} and \textit{local differential privacy (LDP)}, which is proved to be stronger than CDP in many cases. We develop two algorithms which make pricing decisions and learn the unknown demand on the fly, while satisfying the CDP and LDP gurantees respectively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at most $\tilde O(T^{(d+2)/(d+4)}+\varepsilon^{-1}T^{d/(d+4)})$. Here, the parameter $T$ denotes the length of the time horizon, $d$ is the dimension of the personalized information vector, and the key parameter $\varepsilon>0$ measures the strength of privacy (smaller $\varepsilon$ indicates a stronger privacy protection). On the other hand, for the algorithm with LDP guarantee, its regret is proved to be at most $\tilde O(\varepsilon^{-2/(d+2)}T^{(d+1)/(d+2)})$, which is near-optimal as we prove a lower bound of $\Omega(\varepsilon^{-2/(d+2)}T^{(d+1)/(d+2)})$ for any algorithm with LDP guarantee.

Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FedAvg) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including Adagrad, Adam, and Yogi, and analyze their convergence in the presence of heterogeneous data for general non-convex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.

Train machine learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of real data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to three issues. First, the noisy data is close to its original value with high probability, increasing the risk of information exposure. Second, a large variance is introduced to the estimated average, causing poor accuracy. Last, the privacy budget explodes due to the high dimensionality of weights in deep learning models. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It is capable of making the data more distinct from its original value and introducing lower variance. Moreover, the proposed mechanism bypasses the curse of dimensionality by splitting and shuffling model updates. A series of empirical evaluations on three commonly used datasets, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

北京阿比特科技有限公司