Existing Curry-Howard interpretations of call-by-value evaluation for the $\lambda$-calculus involve classical logic or linear logic, despite the fact that call-by-value was introduced in an intuitionistic setting without linear features. This paper shows that the most basic sequent calculus for minimal intuitionistic logic -- dubbed here vanilla -- can naturally be seen as a logical interpretation of call-by-value evaluation. This is obtained by establishing mutual simulations with a well-known formalism for call-by-value evaluation.
In the logical framework introduced by Grohe and Tur\'an (TOCS 2004) for Boolean classification problems, the instances to classify are tuples from a logical structure, and Boolean classifiers are described by parametric models based on logical formulas. This is a specific scenario for supervised passive learning, where classifiers should be learned based on labelled examples. Existing results in this scenario focus on Boolean classification. This paper presents learnability results beyond Boolean classification. We focus on multiclass classification problems where the task is to assign input tuples to arbitrary integers. To represent such integer-valued classifiers, we use aggregate queries specified by an extension of first-order logic with counting terms called FOC1. Our main result shows the following: given a database of polylogarithmic degree, within quasi-linear time, we can build an index structure that makes it possible to learn FOC1-definable integer-valued classifiers in time polylogarithmic in the size of the database and polynomial in the number of training examples.
An important problem in signal processing and deep learning is to achieve \textit{invariance} to nuisance factors not relevant for the task. Since many of these factors are describable as the action of a group $G$ (e.g. rotations, translations, scalings), we want methods to be $G$-invariant. The $G$-Bispectrum extracts every characteristic of a given signal up to group action: for example, the shape of an object in an image, but not its orientation. Consequently, the $G$-Bispectrum has been incorporated into deep neural network architectures as a computational primitive for $G$-invariance\textemdash akin to a pooling mechanism, but with greater selectivity and robustness. However, the computational cost of the $G$-Bispectrum ($\mathcal{O}(|G|^2)$, with $|G|$ the size of the group) has limited its widespread adoption. Here, we show that the $G$-Bispectrum computation contains redundancies that can be reduced into a \textit{selective $G$-Bispectrum} with $\mathcal{O}(|G|)$ complexity. We prove desirable mathematical properties of the selective $G$-Bispectrum and demonstrate how its integration in neural networks enhances accuracy and robustness compared to traditional approaches, while enjoying considerable speeds-up compared to the full $G$-Bispectrum.
Oja's algorithm for Streaming Principal Component Analysis (PCA) for $n$ data-points in a $d$ dimensional space achieves the same sin-squared error $O(r_{\mathsf{eff}}/n)$ as the offline algorithm in $O(d)$ space and $O(nd)$ time and a single pass through the datapoints. Here $r_{\mathsf{eff}}$ is the effective rank (ratio of the trace and the principal eigenvalue of the population covariance matrix $\Sigma$). Under this computational budget, we consider the problem of sparse PCA, where the principal eigenvector of $\Sigma$ is $s$-sparse, and $r_{\mathsf{eff}}$ can be large. In this setting, to our knowledge, \textit{there are no known single-pass algorithms} that achieve the minimax error bound in $O(d)$ space and $O(nd)$ time without either requiring strong initialization conditions or assuming further structure (e.g., spiked) of the covariance matrix. We show that a simple single-pass procedure that thresholds the output of Oja's algorithm (the Oja vector) can achieve the minimax error bound under some regularity conditions in $O(d)$ space and $O(nd)$ time. We present a nontrivial and novel analysis of the entries of the unnormalized Oja vector, which involves the projection of a product of independent random matrices on a random initial vector. This is completely different from previous analyses of Oja's algorithm and matrix products, which have been done when the $r_{\mathsf{eff}}$ is bounded.
How hard is it to estimate a discrete-time signal $(x_{1}, ..., x_{n}) \in \mathbb{C}^n$ satisfying an unknown linear recurrence relation of order $s$ and observed in i.i.d. complex Gaussian noise? The class of all such signals is parametric but extremely rich: it contains all exponential polynomials over $\mathbb{C}$ with total degree $s$, including harmonic oscillations with $s$ arbitrary frequencies. Geometrically, this class corresponds to the projection onto $\mathbb{C}^{n}$ of the union of all shift-invariant subspaces of $\mathbb{C}^\mathbb{Z}$ of dimension $s$. We show that the statistical complexity of this class, as measured by the squared minimax radius of the $(1-\delta)$-confidence $\ell_2$-ball, is nearly the same as for the class of $s$-sparse signals, namely $O\left(s\log(en) + \log(\delta^{-1})\right) \cdot \log^2(es) \cdot \log(en/s).$ Moreover, the corresponding near-minimax estimator is tractable, and it can be used to build a test statistic with a near-minimax detection threshold in the associated detection problem. These statistical results rest upon an approximation-theoretic one: we show that finite-dimensional shift-invariant subspaces admit compactly supported reproducing kernels whose Fourier spectra have nearly the smallest possible $\ell_p$-norms, for all $p \in [1,+\infty]$ at once.
Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts, challenges persist in robustly processing long inputs. In this paper, we introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously. Upon receiving a question, the agent first undertakes a step-by-step analysis and devises a rational plan. It then invokes a set of predefined functions to read node content and neighbors, facilitating a coarse-to-fine exploration of the graph. Throughout the exploration, the agent continuously records new insights and reflects on current circumstances to optimize the process until it has gathered sufficient information to generate an answer. Experimental results on the LV-Eval dataset reveal that GraphReader, using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin. Additionally, our approach demonstrates superior performance on four challenging single-hop and multi-hop benchmarks.
Existing Curry-Howard interpretations of call-by-value evaluation for the $\lambda$-calculus are either based on ad-hoc modifications of intuitionistic proof systems or involve additional logical concepts such as classical logic or linear logic, despite the fact that call-by-value was introduced in an intuitionistic setting without linear features. This paper shows that the most basic sequent calculus for minimal intuitionistic logic -- dubbed here vanilla -- can naturally be seen as a logical interpretation of call-by-value evaluation. This is obtained by establishing mutual simulations with a well-known formalism for call-by-value evaluation.
Matrix sketching, aimed at approximating a matrix $\boldsymbol{A} \in \mathbb{R}^{N\times d}$ consisting of vector streams of length $N$ with a smaller sketching matrix $\boldsymbol{B} \in \mathbb{R}^{\ell\times d}, \ell \ll N$, has garnered increasing attention in fields such as large-scale data analytics and machine learning. A well-known deterministic matrix sketching method is the Frequent Directions algorithm, which achieves the optimal $O\left(\frac{d}{\varepsilon}\right)$ space bound and provides a covariance error guarantee of $\varepsilon = \lVert \boldsymbol{A}^\top \boldsymbol{A} - \boldsymbol{B}^\top \boldsymbol{B} \rVert_2/\lVert \boldsymbol{A} \rVert_F^2$. The matrix sketching problem becomes particularly interesting in the context of sliding windows, where the goal is to approximate the matrix $\boldsymbol{A}_W$, formed by input vectors over the most recent $N$ time units. However, despite recent efforts, whether achieving the optimal $O\left(\frac{d}{\varepsilon}\right)$ space bound on sliding windows is possible has remained an open question. In this paper, we introduce the DS-FD algorithm, which achieves the optimal $O\left(\frac{d}{\varepsilon}\right)$ space bound for matrix sketching over row-normalized, sequence-based sliding windows. We also present matching upper and lower space bounds for time-based and unnormalized sliding windows, demonstrating the generality and optimality of \dsfd across various sliding window models. This conclusively answers the open question regarding the optimal space bound for matrix sketching over sliding windows. Furthermore, we conduct extensive experiments with both synthetic and real-world datasets, validating our theoretical claims and thus confirming the correctness and effectiveness of our algorithm, both theoretically and empirically.
We construct a classical oracle relative to which $\mathsf{P} = \mathsf{NP}$ but quantum-computable quantum-secure trapdoor one-way functions exist. This is a substantial strengthening of the result of Kretschmer, Qian, Sinha, and Tal (STOC 2023), which only achieved single-copy pseudorandom quantum states relative to an oracle that collapses $\mathsf{NP}$ to $\mathsf{P}$. For example, our result implies multi-copy pseudorandom states and pseudorandom unitaries, but also classical-communication public-key encryption, signatures, and oblivious transfer schemes relative to an oracle on which $\mathsf{P}=\mathsf{NP}$. Hence, in our new relativized world, classical computers live in "Algorithmica" whereas quantum computers live in "Cryptomania," using the language of Impagliazzo's worlds. Our proof relies on a new distributional block-insensitivity lemma for $\mathsf{AC^0}$ circuits, wherein a single block is resampled from an arbitrary distribution.
We construct a polynomial-time classical algorithm that samples from the output distribution of low-depth noisy Clifford circuits with any product-state inputs and final single-qubit measurements in any basis. This class of circuits includes Clifford-magic circuits and Conjugated-Clifford circuits, which are important candidates for demonstrating quantum advantage using non-universal gates. Additionally, our results generalize a simulation algorithm for IQP circuits [Rajakumar et. al, SODA'25] to the case of IQP circuits augmented with CNOT gates, which is another class of non-universal circuits that are relevant to current experiments. Importantly, our results do not require randomness assumptions over the circuit families considered (such as anticoncentration properties) and instead hold for \textit{every} circuit in each class. This allows us to place tight limitations on the robustness of these circuits to noise. In particular, we show that there is no quantum advantage at large depths with realistically noisy Clifford circuits, even with perfect magic state inputs, or IQP circuits with CNOT gates, even with arbitrary diagonal non-Clifford gates. The key insight behind the algorithm is that interspersed noise causes a decay of long-range entanglement, and at depths beyond a critical threshold, the noise builds up to an extent that most correlations can be classically simulated. To prove our results, we merge techniques from percolation theory with tools from Pauli path analysis.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.