亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the convergence to local Nash equilibria of gradient methods for two-player zero-sum differentiable games. It is well-known that such dynamics converge locally when $S \succ 0$ and may diverge when $S=0$, where $S\succeq 0$ is the symmetric part of the Jacobian at equilibrium that accounts for the "potential" component of the game. We show that these dynamics also converge as soon as $S$ is nonzero (partial curvature) and the eigenvectors of the antisymmetric part $A$ are in general position with respect to the kernel of $S$. We then study the convergence rates when $S \ll A$ and prove that they typically depend on the average of the eigenvalues of $S$, instead of the minimum as an analogy with minimization problems would suggest. To illustrate our results, we consider the problem of computing mixed Nash equilibria of continuous games. We show that, thanks to partial curvature, conic particle methods -- which optimize over both weights and supports of the mixed strategies -- generically converge faster than fixed-support methods. For min-max games, it is thus beneficial to add degrees of freedom "with curvature": this can be interpreted as yet another benefit of over-parameterization.

相關內容

We propose a general purpose confidence interval procedure (CIP) for statistical functionals constructed using data from a stationary time series. The procedures we propose are based on derived distribution-free analogues of the $\chi^2$ and Student's $t$ random variables for the statistical functional context, and hence apply in a wide variety of settings including quantile estimation, gradient estimation, M-estimation, CVAR-estimation, and arrival process rate estimation, apart from more traditional statistical settings. Like the method of subsampling, we use overlapping batches of time series data to estimate the underlying variance parameter; unlike subsampling and the bootstrap, however, we assume that the implied point estimator of the statistical functional obeys a central limit theorem (CLT) to help identify the weak asymptotics (called OB-x limits, x=I,II,III) of batched Studentized statistics. The OB-x limits, certain functionals of the Wiener process parameterized by the size of the batches and the extent of their overlap, form the essential machinery for characterizing dependence, and consequently the correctness of the proposed CIPs. The message from extensive numerical experimentation is that in settings where a functional CLT on the point estimator is in effect, using \emph{large overlapping batches} alongside OB-x critical values yields confidence intervals that are often of significantly higher quality than those obtained from more generic methods like subsampling or the bootstrap. We illustrate using examples from CVaR estimation, ARMA parameter estimation, and NHPP rate estimation; R and MATLAB code for OB-x critical values is available at~\texttt{web.ics.purdue.edu/~pasupath/}.

It is well known that it is impossible to construct useful confidence intervals (CIs) about the mean or median of a response $Y$ conditional on features $X = x$ without making strong assumptions about the joint distribution of $X$ and $Y$. This paper introduces a new framework for reasoning about problems of this kind by casting the conditional problem at different levels of resolution, ranging from coarse to fine localization. In each of these problems, we consider local quantiles defined as the marginal quantiles of $Y$ when $(X,Y)$ is resampled in such a way that samples $X$ near $x$ are up-weighted while the conditional distribution $Y \mid X$ does not change. We then introduce the Weighted Quantile method, which asymptotically produces the uniformly most accurate confidence intervals for these local quantiles no matter the (unknown) underlying distribution. Another method, namely, the Quantile Rejection method, achieves finite sample validity under no assumption whatsoever. We conduct extensive numerical studies demonstrating that both of these methods are valid. In particular, we show that the Weighted Quantile procedure achieves nominal coverage as soon as the effective sample size is in the range of 10 to 20.

This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval. We have conducted several numerical experiments using the proposed algorithm for various test problems to validate its performance. It can be said that the obtained numerical results are in accordance with the theoretical findings.

Despite the superior performance, Large Language Models~(LLMs) require significant computational resources for deployment and use. To overcome this issue, quantization methods have been widely applied to reduce the memory footprint of LLMs as well as increasing the inference rate. However, a major challenge is that low-bit quantization methods often lead to performance degradation. It is important to understand how quantization impacts the capacity of LLMs. Different from previous studies focused on overall performance, this work aims to investigate the impact of quantization on \emph{emergent abilities}, which are important characteristics that distinguish LLMs from small language models. Specially, we examine the abilities of in-context learning, chain-of-thought reasoning, and instruction-following in quantized LLMs. Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation on the test of these abilities. To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning. Our work derives a series of important findings to understand the impact of quantization on emergent abilities, and sheds lights on the possibilities of extremely low-bit quantization for LLMs.

In uncertainty quantification, variance-based global sensitivity analysis quantitatively determines the effect of each input random variable on the output by partitioning the total output variance into contributions from each input. However, computing conditional expectations can be prohibitively costly when working with expensive-to-evaluate models. Surrogate models can accelerate this, yet their accuracy depends on the quality and quantity of training data, which is expensive to generate (experimentally or computationally) for complex engineering systems. Thus, methods that work with limited data are desirable. We propose a diffeomorphic modulation under observable response preserving homotopy (D-MORPH) regression to train a polynomial dimensional decomposition surrogate of the output that minimizes the number of training data. The new method first computes a sparse Lasso solution and uses it to define the cost function. A subsequent D-MORPH regression minimizes the difference between the D-MORPH and Lasso solution. The resulting D-MORPH surrogate is more robust to input variations and more accurate with limited training data. We illustrate the accuracy and computational efficiency of the new surrogate for global sensitivity analysis using mathematical functions and an expensive-to-simulate model of char combustion. The new method is highly efficient, requiring only 15% of the training data compared to conventional regression.

We propose an improved convergence analysis technique that characterizes the distributed learning paradigm of federated learning (FL) with imperfect/noisy uplink and downlink communications. Such imperfect communication scenarios arise in the practical deployment of FL in emerging communication systems and protocols. The analysis developed in this paper demonstrates, for the first time, that there is an asymmetry in the detrimental effects of uplink and downlink communications in FL. In particular, the adverse effect of the downlink noise is more severe on the convergence of FL algorithms. Using this insight, we propose improved Signal-to-Noise (SNR) control strategies that, discarding the negligible higher-order terms, lead to a similar convergence rate for FL as in the case of a perfect, noise-free communication channel while incurring significantly less power resources compared to existing solutions. In particular, we establish that to maintain the $O(\frac{1}{\sqrt{K}})$ rate of convergence like in the case of noise-free FL, we need to scale down the uplink and downlink noise by $\Omega({\sqrt{k}})$ and $\Omega({k})$ respectively, where $k$ denotes the communication round, $k=1,\dots, K$. Our theoretical result is further characterized by two major benefits: firstly, it does not assume the somewhat unrealistic assumption of bounded client dissimilarity, and secondly, it only requires smooth non-convex loss functions, a function class better suited for modern machine learning and deep learning models. We also perform extensive empirical analysis to verify the validity of our theoretical findings.

The standard formulation of the PDE system of Mean Field Games (MFG) requires the differentiability of the Hamiltonian. However in many cases, the structure of the underlying optimal problem leads to a convex but non-differentiable Hamiltonian. For time-dependent MFG systems, we introduce a generalization of the problem as a Partial Differential Inclusions (PDI) by interpreting the derivative of the Hamiltonian in terms of the subdifferential set. In particular, we prove the existence and uniqueness of weak solutions to the resulting MFG PDI system under standard assumptions in the literature. We propose a monotone stabilized finite element discretization of the problem, using conforming affine elements in space and an implicit Euler discretization in time with mass-lumping. We prove the strong convergence in $L^2(H^1)$ of the value function approximations, and strong convergence in $L^p(L^2)$ of the density function approximations, together with strong $L^2$-convergence of the value function approximations at the initial time.

Delays and asynchrony are inevitable in large-scale machine-learning problems where communication plays a key role. As such, several works have extensively analyzed stochastic optimization with delayed gradients. However, as far as we are aware, no analogous theory is available for min-max optimization, a topic that has gained recent popularity due to applications in adversarial robustness, game theory, and reinforcement learning. Motivated by this gap, we examine the performance of standard min-max optimization algorithms with delayed gradient updates. First, we show (empirically) that even small delays can cause prominent algorithms like Extra-gradient (\texttt{EG}) to diverge on simple instances for which \texttt{EG} guarantees convergence in the absence of delays. Our empirical study thus suggests the need for a careful analysis of delayed versions of min-max optimization algorithms. Accordingly, under suitable technical assumptions, we prove that Gradient Descent-Ascent (\texttt{GDA}) and \texttt{EG} with delayed updates continue to guarantee convergence to saddle points for convex-concave and strongly convex-strongly concave settings. Our complexity bounds reveal, in a transparent manner, the slow-down in convergence caused by delays.

Entropic risk (ERisk) is an established risk measure in finance, quantifying risk by an exponential re-weighting of rewards. We study ERisk for the first time in the context of turn-based stochastic games with the total reward objective. This gives rise to an objective function that demands the control of systems in a risk-averse manner. We show that the resulting games are determined and, in particular, admit optimal memoryless deterministic strategies. This contrasts risk measures that previously have been considered in the special case of Markov decision processes and that require randomization and/or memory. We provide several results on the decidability and the computational complexity of the threshold problem, i.e. whether the optimal value of ERisk exceeds a given threshold. In the most general case, the problem is decidable subject to Shanuel's conjecture. If all inputs are rational, the resulting threshold problem can be solved using algebraic numbers, leading to decidability via a polynomial-time reduction to the existential theory of the reals. Further restrictions on the encoding of the input allow the solution of the threshold problem in NP$\cap$coNP. Finally, an approximation algorithm for the optimal value of ERisk is provided.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

北京阿比特科技有限公司