Personalization generally improves the performance of queries but in a few cases it may also harms it. If we are able to predict and therefore to disable personalization for those situations, the overall performance will be higher and users will be more satisfied with personalized systems. We use some state-of-the-art pre-retrieval query performance predictors and propose some others including the user profile information for the previous purpose. We study the correlations among these predictors and the difference between the personalized and the original queries. We also use classification and regression techniques to improve the results and finally reach a bit more than one third of the maximum ideal performance. We think this is a good starting point within this research line, which certainly needs more effort and improvements.
We revisit and slightly modify the proof of the Gaussian Hanson-Wright inequality where we keep track of the absolute constant in its formulation.
Recent studies reveal the connection between GNNs and the diffusion process, which motivates many diffusion-based GNNs to be proposed. However, since these two mechanisms are closely related, one fundamental question naturally arises: Is there a general diffusion framework that can formally unify these GNNs? The answer to this question can not only deepen our understanding of the learning process of GNNs, but also may open a new door to design a broad new class of GNNs. In this paper, we propose a general diffusion equation framework with the fidelity term, which formally establishes the relationship between the diffusion process with more GNNs. Meanwhile, with this framework, we identify one characteristic of graph diffusion networks, i.e., the current neural diffusion process only corresponds to the first-order diffusion equation. However, by an experimental investigation, we show that the labels of high-order neighbors actually exhibit monophily property, which induces the similarity based on labels among high-order neighbors without requiring the similarity among first-order neighbors. This discovery motives to design a new high-order neighbor-aware diffusion equation, and derive a new type of graph diffusion network (HiD-Net) based on the framework. With the high-order diffusion equation, HiD-Net is more robust against attacks and works on both homophily and heterophily graphs. We not only theoretically analyze the relation between HiD-Net with high-order random walk, but also provide a theoretical convergence guarantee. Extensive experimental results well demonstrate the effectiveness of HiD-Net over state-of-the-art graph diffusion networks.
How can we leverage existing column relationships within silos, to predict similar ones across silos? Can we do this efficiently and effectively? Existing matching approaches do not exploit prior knowledge, relying on prohibitively expensive similarity computations. In this paper we present the first technique for matching columns across data silos, called SiMa, which leverages Graph Neural Networks (GNNs) to learn from existing column relationships within data silos, and dataset-specific profiles. The main novelty of SiMa is its ability to be trained incrementally on column relationships within each silo individually, without requiring the consolidation of all datasets in a single place. Our experiments show that SiMa is more effective than the - otherwise inapplicable to the setting of silos - state-of-the-art matching methods, while requiring orders of magnitude less computational resources. Moreover, we demonstrate that SiMa considerably outperforms other state-of-the-art column representation learning methods.
Question answering (QA) can only make progress if we know if an answer is correct, but for many of the most challenging and interesting QA examples, current evaluation metrics to determine answer equivalence (AE) often do not align with human judgments, particularly more verbose, free-form answers from large language models (LLM). There are two challenges: a lack of data and that models are too big: LLM-based scorers can correlate better with human judges, but this task has only been tested on limited QA datasets, and even when available, update of the model is limited because LLMs are large and often expensive. We rectify both of these issues by providing clear and consistent guidelines for evaluating AE in machine QA adopted from professional human QA contests. We also introduce a combination of standard evaluation and a more efficient, robust, and lightweight discriminate AE classifier-based matching method (CFMatch, smaller than 1 MB), trained and validated to more accurately evaluate answer correctness in accordance with adopted expert AE rules that are more aligned with human judgments.
Despite the importance of trust in human-AI interactions, researchers must adopt questionnaires from other disciplines that lack validation in the AI context. Motivated by the need for reliable and valid measures, we investigated the psychometric quality of two trust questionnaires, the Trust between People and Automation scale (TPA) by Jian et al. (2000) and the Trust Scale for the AI Context (TAI) by Hoffman et al. (2023). In a pre-registered online experiment (N = 1485), participants observed interactions with trustworthy and untrustworthy AI (autonomous vehicle and chatbot). Results support the psychometric quality of the TAI while revealing opportunities to improve the TPA, which we outline in our recommendations for using the two questionnaires. Furthermore, our findings provide additional empirical evidence of trust and distrust as two distinct constructs that may coexist independently. Building on our findings, we highlight the opportunities and added value of measuring both trust and distrust in human-AI research and advocate for further work on both constructs.
Providing personalized recommendations for insurance products is particularly challenging due to the intrinsic and distinctive features of the insurance domain. First, unlike more traditional domains like retail, movie etc., a large amount of user feedback is not available and the item catalog is smaller. Second, due to the higher complexity of products, the majority of users still prefer to complete their purchases over the phone instead of online. We present different recommender models to address such data scarcity in the insurance domain. We use recurrent neural networks with 3 different types of loss functions and architectures (cross-entropy, censored Weibull, attention). Our models cope with data scarcity by learning from multiple sessions and different types of user actions. Moreover, differently from previous session-based models, our models learn to predict a target action that does not happen within the session. Our models outperform state-of-the-art baselines on a real-world insurance dataset, with ca. 44K users, 16 items, 54K purchases and 117K sessions. Moreover, combining our models with demographic data boosts the performance. Analysis shows that considering multiple sessions and several types of actions are both beneficial for the models, and that our models are not unfair with respect to age, gender and income.
Skill mastery is a priority for success in all fields. We present a parallel between the development of skill mastery and the process of solving jigsaw puzzles. We show that iterative random sampling solves jigsaw puzzles in two phases: a lag phase that is characterized by little change and occupies the majority of the time, and a growth phase that marks rapid and imminent puzzle completion. Changes in the proportions of the number of single pieces and larger pieces can be overlaid on the timeline and progression of skill mastery. An emphasis is placed on the development of connections between pieces, which serves as an indicator of increasing puzzle completion and increasing skill mastery. Our manuscript provides a straightforward visual of skill mastery in the context of a common recreational activity.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.