亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Observational studies have recently received significant attention from the machine learning community due to the increasingly available non-experimental observational data and the limitations of the experimental studies, such as considerable cost, impracticality, small and less representative sample sizes, etc. In observational studies, de-confounding is a fundamental problem of individualised treatment effects (ITE) estimation. This paper proposes disentangled representations with adversarial training to selectively balance the confounders in the binary treatment setting for the ITE estimation. The adversarial training of treatment policy selectively encourages treatment-agnostic balanced representations for the confounders and helps to estimate the ITE in the observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets, with varying degrees of confounding, prove that our proposed approach improves the state-of-the-art methods in achieving lower error in the ITE estimation.

相關內容

Multiple robots could perceive a scene (e.g., detect objects) collaboratively better than individuals, although easily suffer from adversarial attacks when using deep learning. This could be addressed by the adversarial defense, but its training requires the often-unknown attacking mechanism. Differently, we propose ROBOSAC, a novel sampling-based defense strategy generalizable to unseen attackers. Our key idea is that collaborative perception should lead to consensus rather than dissensus in results compared to individual perception. This leads to our hypothesize-and-verify framework: perception results with and without collaboration from a random subset of teammates are compared until reaching a consensus. In such a framework, more teammates in the sampled subset often entail better perception performance but require longer sampling time to reject potential attackers. Thus, we derive how many sampling trials are needed to ensure the desired size of an attacker-free subset, or equivalently, the maximum size of such a subset that we can successfully sample within a given number of trials. We validate our method on the task of collaborative 3D object detection in autonomous driving scenarios.

Temporal modeling is crucial for multi-frame human pose estimation. Most existing methods directly employ optical flow or deformable convolution to predict full-spectrum motion fields, which might incur numerous irrelevant cues, such as a nearby person or background. Without further efforts to excavate meaningful motion priors, their results are suboptimal, especially in complicated spatiotemporal interactions. On the other hand, the temporal difference has the ability to encode representative motion information which can potentially be valuable for pose estimation but has not been fully exploited. In this paper, we present a novel multi-frame human pose estimation framework, which employs temporal differences across frames to model dynamic contexts and engages mutual information objectively to facilitate useful motion information disentanglement. To be specific, we design a multi-stage Temporal Difference Encoder that performs incremental cascaded learning conditioned on multi-stage feature difference sequences to derive informative motion representation. We further propose a Representation Disentanglement module from the mutual information perspective, which can grasp discriminative task-relevant motion signals by explicitly defining useful and noisy constituents of the raw motion features and minimizing their mutual information. These place us to rank No.1 in the Crowd Pose Estimation in Complex Events Challenge on benchmark dataset HiEve, and achieve state-of-the-art performance on three benchmarks PoseTrack2017, PoseTrack2018, and PoseTrack21.

Causal inference in spatial settings is met with unique challenges and opportunities. On one hand, a unit's outcome can be affected by the exposure at many locations, leading to interference. On the other hand, unmeasured spatial variables can confound the effect of interest. Our work has two overarching goals. First, using causal diagrams, we illustrate that spatial confounding and interference can manifest as each other, meaning that investigating the presence of one can lead to wrongful conclusions in the presence of the other, and that statistical dependencies in the exposure variable can render standard analyses invalid. This can have crucial implications for analyzing data with spatial or other dependencies, and for understanding the effect of interventions on dependent units. Secondly, we propose a parametric approach to mitigate bias from local and neighborhood unmeasured spatial confounding and account for interference simultaneously. This approach is based on simultaneous modeling of the exposure and the outcome while accounting for the presence of spatially-structured unmeasured predictors of both variables. We illustrate our approach with a simulation study and with an analysis of the local and interference effects of sulfur dioxide emissions from power plants on cardiovascular mortality.

In health and social sciences, it is critically important to identify subgroups of the study population where a treatment has notable heterogeneity in the causal effects with respect to the average treatment effect. Data-driven discovery of heterogeneous treatment effects (HTE) via decision tree methods has been proposed for this task. Despite its high interpretability, the single-tree discovery of HTE tends to be highly unstable and to find an oversimplified representation of treatment heterogeneity. To accommodate these shortcomings, we propose Causal Rule Ensemble (CRE), a new method to discover heterogeneous subgroups through an ensemble-of-trees approach. CRE has the following features: 1) provides an interpretable representation of the HTE; 2) allows extensive exploration of complex heterogeneity patterns; and 3) guarantees high stability in the discovery. The discovered subgroups are defined in terms of interpretable decision rules, and we develop a general two-stage approach for subgroup-specific conditional causal effects estimation, providing theoretical guarantees. Via simulations, we show that the CRE method has a strong discovery ability and a competitive estimation performance when compared to state-of-the-art techniques. Finally, we apply CRE to discover subgroups most vulnerable to the effects of exposure to air pollution on mortality for 35.3 million Medicare beneficiaries across the contiguous U.S.

Causal inference in observational studies can be challenging when confounders are subject to missingness. Generally, the identification of causal effects is not guaranteed even under restrictive parametric model assumptions when confounders are missing not at random. To address this, We propose a general framework to establish the identification of causal effects when confounders are subject to treatment-independent missingness, which means that the missing data mechanism is independent of the treatment, given the outcome and possibly missing confounders. We give special consideration to commonly-used models for continuous and binary outcomes and provide counterexamples when identification fails. For estimation, we provide a weighted estimation equation estimating method for model parameters and purpose three estimators for the average causal effect based on the estimated models. We evaluate the finite-sample performance of the estimators via simulations. We further illustrate the proposed method with real data sets from the National Health and Nutrition Examination Survey.

The warming of the Arctic, also known as Arctic amplification, is led by several atmospheric and oceanic drivers, however, the details of its underlying thermodynamic causes are still unknown. Inferring the causal effects of atmospheric processes on sea ice melt using fixed treatment effect strategies leads to unrealistic counterfactual estimations. Such models are also prone to bias due to time-varying confoundedness. In order to tackle these challenges, we propose TCINet - time-series causal inference model to infer causation under continuous treatment using recurrent neural networks. Through experiments on synthetic and observational data, we show how our research can substantially improve the ability to quantify the leading causes of Arctic sea ice melt.

Time-to-event analysis often relies on prior parametric assumptions, or, if a non-parametric approach is chosen, Cox's model. This is inherently tied to the assumption of proportional hazards, with the analysis potentially invalidated if this assumption is not fulfilled. In addition, most interpretations focus on the hazard ratio, that is often misinterpreted as the relative risk. In this paper, we introduce an alternative to current methodology for assessing a treatment effect in a two-group situation, not relying on the proportional hazards assumption but assuming proportional risks. Precisely, we propose a new non-parametric model to directly estimate the relative risk of two groups to experience an event under the assumption that the risk ratio is constant over time. In addition to this relative measure, our model allows for calculating the number needed to treat as an absolute measure, providing the possibility of an easy and holistic interpretation of the data. We demonstrate the validity of the approach by means of a simulation study and present an application to data from a large randomized controlled trial investigating the effect of dapagliflozin on the risk of first hospitalization for heart failure.

Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

北京阿比特科技有限公司