We present a novel training method for deep operator networks (DeepONets), one of the most popular neural network models for operators. DeepONets are constructed by two sub-networks, namely the branch and trunk networks. Typically, the two sub-networks are trained simultaneously, which amounts to solving a complex optimization problem in a high dimensional space. In addition, the nonconvex and nonlinear nature makes training very challenging. To tackle such a challenge, we propose a two-step training method that trains the trunk network first and then sequentially trains the branch network. The core mechanism is motivated by the divide-and-conquer paradigm and is the decomposition of the entire complex training task into two subtasks with reduced complexity. Therein the Gram-Schmidt orthonormalization process is introduced which significantly improves stability and generalization ability. On the theoretical side, we establish a generalization error estimate in terms of the number of training data, the width of DeepONets, and the number of input and output sensors. Numerical examples are presented to demonstrate the effectiveness of the two-step training method, including Darcy flow in heterogeneous porous media.
Spiking neural network is a kind of neuromorphic computing that is believed to improve the level of intelligence and provide advantages for quantum computing. In this work, we address this issue by designing an optical spiking neural network and find that it can be used to accelerate the speed of computation, especially on combinatorial optimization problems. Here the spiking neural network is constructed by the antisymmetrically coupled degenerate optical parametric oscillator pulses and dissipative pulses. A nonlinear transfer function is chosen to mitigate amplitude inhomogeneities and destabilize the resulting local minima according to the dynamical behavior of spiking neurons. It is numerically shown that the spiking neural network-coherent Ising machines have excellent performance on combinatorial optimization problems, which is expected to offer new applications for neural computing and optical computing.
In this article, an efficient numerical method for computing finite-horizon controllability Gramians in Cholesky-factored form is proposed. The method is applicable to general dense matrices of moderate size and produces a Cholesky factor of the Gramian without computing the full product. In contrast to other methods applicable to this task, the proposed method is a generalization of the scaling-and-squaring approach for approximating the matrix exponential. It exploits a similar doubling formula for the Gramian, and thereby keeps the required computational effort modest. Most importantly, a rigorous backward error analysis is provided, which guarantees that the approximation is accurate to the round-off error level in double precision. This accuracy is illustrated in practice on a large number of standard test examples. The method has been implemented in the Julia package FiniteHorizonGramians.jl, which is available online under the MIT license. Code for reproducing the experimental results is included in this package, as well as code for determining the optimal method parameters. The analysis can thus easily be adapted to a different finite-precision arithmetic.
Neural network models become increasingly popular as dynamic modeling tools in the control community. They have many appealing features including nonlinear structures, being able to approximate any functions. While most researchers hold optimistic attitudes towards such models, this paper questions the capability of (deep) neural networks for the modeling of dynamic systems using input-output data. For the identification of linear time-invariant (LTI) dynamic systems, two representative neural network models, Long Short-Term Memory (LSTM) and Cascade Foward Neural Network (CFNN) are compared to the standard Prediction Error Method (PEM) of system identification. In the comparison, four essential aspects of system identification are considered, then several possible defects and neglected issues of neural network based modeling are pointed out. Detailed simulation studies are performed to verify these defects: for the LTI system, both LSTM and CFNN fail to deliver consistent models even in noise-free cases; and they give worse results than PEM in noisy cases.
We study how to construct a stochastic process on a finite interval with given `roughness' and finite joint moments of marginal distributions. We first extend Ciesielski's isomorphism along a general sequence of partitions, and provide a characterization of H\"older regularity of a function in terms of its Schauder coefficients. Using this characterization we provide a better (pathwise) estimator of H\"older exponent. As an additional application, we construct fake (fractional) Brownian motions with some path properties and finite moments of marginal distributions same as (fractional) Brownian motions. These belong to non-Gaussian families of stochastic processes which are statistically difficult to distinguish from real (fractional) Brownian motions.
We explain the methodology used to create the data submitted to HuMob Challenge, a data analysis competition for human mobility prediction. We adopted a personalized model to predict the individual's movement trajectory from their data, instead of predicting from the overall movement, based on the hypothesis that human movement is unique to each person. We devised the features such as the date and time, activity time, days of the week, time of day, and frequency of visits to POI (Point of Interest). As additional features, we incorporated the movement of other individuals with similar behavior patterns through the employment of clustering. The machine learning model we adopted was the Support Vector Regression (SVR). We performed accuracy through offline assessment and carried out feature selection and parameter tuning. Although overall dataset provided consists of 100,000 users trajectory, our method use only 20,000 target users data, and do not need to use other 80,000 data. Despite the personalized model's traditional feature engineering approach, this model yields reasonably good accuracy with lower computational cost.
We study the global linear convergence of policy gradient (PG) methods for finite-horizon continuous-time exploratory linear-quadratic control (LQC) problems. The setting includes stochastic LQC problems with indefinite costs and allows additional entropy regularisers in the objective. We consider a continuous-time Gaussian policy whose mean is linear in the state variable and whose covariance is state-independent. Contrary to discrete-time problems, the cost is noncoercive in the policy and not all descent directions lead to bounded iterates. We propose geometry-aware gradient descents for the mean and covariance of the policy using the Fisher geometry and the Bures-Wasserstein geometry, respectively. The policy iterates are shown to satisfy an a-priori bound, and converge globally to the optimal policy with a linear rate. We further propose a novel PG method with discrete-time policies. The algorithm leverages the continuous-time analysis, and achieves a robust linear convergence across different action frequencies. A numerical experiment confirms the convergence and robustness of the proposed algorithm.
For augmentation of the square-shaped image data of a convolutional neural network (CNN), we introduce a new method, in which the original images are mapped onto a disk with a conformal mapping, rotated around the center of this disk and mapped under such a M\"obius transformation that preserves the disk, and then mapped back onto their original square shape. This process does not result the loss of information caused by removing areas from near the edges of the original images unlike the typical transformations used in the data augmentation for a CNN. We offer here the formulas of all the mappings needed together with detailed instructions how to write a code for transforming the images. The new method is also tested with simulated data and, according the results, using this method to augment the training data of 10 images into 40 images decreases the amount of the error in the predictions by a CNN for a test set of 160 images in a statistically significant way (p-value=0.0360).
Multifunctional biological neural networks exploit multistability in order to perform multiple tasks without changing any network properties. Enabling artificial neural networks (ANNs) to obtain certain multistabilities in order to perform several tasks, where each task is related to a particular attractor in the network's state space, naturally has many benefits from a machine learning perspective. Given the association to multistability, in this paper we explore how the relationship between different attractors influences the ability of a reservoir computer (RC), which is a dynamical system in the form of an ANN, to achieve multifunctionality. We construct the `seeing double' problem to systematically study how a RC reconstructs a coexistence of attractors when there is an overlap between them. As the amount of overlap increases, we discover that for multifunctionality to occur, there is a critical dependence on a suitable choice of the spectral radius for the RC's internal network connections. A bifurcation analysis reveals how multifunctionality emerges and is destroyed as the RC enters a chaotic regime that can lead to chaotic itinerancy.
Since its introduction in 2019, the whole end-to-end neural diarization (EEND) line of work has been addressing speaker diarization as a frame-wise multi-label classification problem with permutation-invariant training. Despite EEND showing great promise, a few recent works took a step back and studied the possible combination of (local) supervised EEND diarization with (global) unsupervised clustering. Yet, these hybrid contributions did not question the original multi-label formulation. We propose to switch from multi-label (where any two speakers can be active at the same time) to powerset multi-class classification (where dedicated classes are assigned to pairs of overlapping speakers). Through extensive experiments on 9 different benchmarks, we show that this formulation leads to significantly better performance (mostly on overlapping speech) and robustness to domain mismatch, while eliminating the detection threshold hyperparameter, critical for the multi-label formulation.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.