We study the global linear convergence of policy gradient (PG) methods for finite-horizon continuous-time exploratory linear-quadratic control (LQC) problems. The setting includes stochastic LQC problems with indefinite costs and allows additional entropy regularisers in the objective. We consider a continuous-time Gaussian policy whose mean is linear in the state variable and whose covariance is state-independent. Contrary to discrete-time problems, the cost is noncoercive in the policy and not all descent directions lead to bounded iterates. We propose geometry-aware gradient descents for the mean and covariance of the policy using the Fisher geometry and the Bures-Wasserstein geometry, respectively. The policy iterates are shown to satisfy an a-priori bound, and converge globally to the optimal policy with a linear rate. We further propose a novel PG method with discrete-time policies. The algorithm leverages the continuous-time analysis, and achieves a robust linear convergence across different action frequencies. A numerical experiment confirms the convergence and robustness of the proposed algorithm.
Study of dynamical systems using partial state observation is an important problem due to its applicability to many real-world systems. We address the problem by studying an echo state network (ESN) framework with partial state input with partial or full state output. Application to the Lorenz system and Chua's oscillator (both numerically simulated and experimental systems) demonstrate the effectiveness of our method. We show that the ESN, as an autonomous dynamical system, is capable of making short-term predictions up to a few Lyapunov times. However, the prediction horizon has high variability depending on the initial condition-an aspect that we explore in detail using the distribution of the prediction horizon. Further, using a variety of statistical metrics to compare the long-term dynamics of the ESN predictions with numerically simulated or experimental dynamics and observed similar results, we show that the ESN can effectively learn the system's dynamics even when trained with noisy numerical or experimental datasets. Thus, we demonstrate the potential of ESNs to serve as cheap surrogate models for simulating the dynamics of systems where complete observations are unavailable.
Recent advances in deep learning have given us some very promising results on the generalization ability of deep neural networks, however literature still lacks a comprehensive theory explaining why heavily over-parametrized models are able to generalize well while fitting the training data. In this paper we propose a PAC type bound on the generalization error of feedforward ReLU networks via estimating the Rademacher complexity of the set of networks available from an initial parameter vector via gradient descent. The key idea is to bound the sensitivity of the network's gradient to perturbation of the input data along the optimization trajectory. The obtained bound does not explicitly depend on the depth of the network. Our results are experimentally verified on the MNIST and CIFAR-10 datasets.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, we analyze the symplectic conditions of two kinds of exponential integrators, and present a first-order symplectic method. In order to solve highly oscillatory problems, the highly accurate implicit ERK integrators (up to order four) are formulated by comparing the Taylor expansions of numerical and exact solutions, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge-Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Finally, numerical results not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.
We present HoVer-UNet, an approach to distill the knowledge of the multi-branch HoVerNet framework for nuclei instance segmentation and classification in histopathology. We propose a compact, streamlined single UNet network with a Mix Vision Transformer backbone, and equip it with a custom loss function to optimally encode the distilled knowledge of HoVerNet, reducing computational requirements without compromising performances. We show that our model achieved results comparable to HoVerNet on the public PanNuke and Consep datasets with a three-fold reduction in inference time. We make the code of our model publicly available at //github.com/DIAGNijmegen/HoVer-UNet.
We study the uniform approximation of echo state networks with randomly generated internal weights. These models, in which only the readout weights are optimized during training, have made empirical success in learning dynamical systems. Recent results showed that echo state networks with ReLU activation are universal. In this paper, we give an alternative construction and prove that the universality holds for general activation functions. Specifically, our main result shows that, under certain condition on the activation function, there exists a sampling procedure for the internal weights so that the echo state network can approximate any continuous casual time-invariant operators with high probability. In particular, for ReLU activation, we give explicit construction for these sampling procedures. We also quantify the approximation error of the constructed ReLU echo state networks for sufficiently regular operators.
This work is concerned with the analysis of a space-time finite element discontinuous Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propagation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency Biot's equations in the poroelastic medium and the elastodynamics equation for the elastic one. To realize the coupling, suitable transmission conditions on the interface between the two domains are (weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled with a dG time integration scheme, resulting in a full space-time dG discretization. We present the stability analysis for both the continuous and the semidiscrete formulations, and we derive error estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
The present article proposes a partitioned Dirichlet-Neumann algorithm, that allows to address unique challenges arising from a novel mixed-dimensional coupling of very slender fibers embedded in fluid flow using a regularized mortar-type finite element discretization. The fibers are modeled via one-dimensional (1D) partial differential equations based on geometrically exact nonlinear beam theory, while the flow is described by the three-dimensional (3D) incompressible Navier-Stokes equations. The arising truly mixed-dimensional 1D-3D coupling scheme constitutes a novel approximate model and numerical strategy, that naturally necessitates specifically tailored solution schemes to ensure an accurate and efficient computational treatment. In particular, we present a strongly coupled partitioned solution algorithm based on a Quasi-Newton method for applications involving fibers with high slenderness ratios that usually present a challenge with regard to the well-known added mass effect. The influence of all employed algorithmic and numerical parameters, namely the applied acceleration technique, the employed constraint regularization parameter as well as shape functions, on efficiency and results of the solution procedure is studied through appropriate examples. Finally, the convergence of the two-way coupled mixed-dimensional problem solution under uniform mesh refinement is demonstrated, a comparison to a 3D reference solution is performed, and the method's capabilities in capturing flow phenomena at large geometric scale separation is illustrated by the example of a submersed vegetation canopy.
Curb detection is essential for environmental awareness in Automated Driving (AD), as it typically limits drivable and non-drivable areas. Annotated data are necessary for developing and validating an AD function. However, the number of public datasets with annotated point cloud curbs is scarce. This paper presents a method for detecting 3D curbs in a sequence of point clouds captured from a LiDAR sensor, which consists of two main steps. First, our approach detects the curbs at each scan using a segmentation deep neural network. Then, a sequence-level processing step estimates the 3D curbs in the reconstructed point cloud using the odometry of the vehicle. From these 3D points of the curb, we obtain polylines structured following ASAM OpenLABEL standard. These detections can be used as pre-annotations in labelling pipelines to efficiently generate curb-related ground truth data. We validate our approach through an experiment in which different human annotators were required to annotate curbs in a group of LiDAR-based sequences with and without our automatically generated pre-annotations. The results show that the manual annotation time is reduced by 50.99% thanks to our detections, keeping the data quality level.
In real-world tasks, there is usually a large amount of unlabeled data and labeled data. The task of combining the two to learn is known as semi-supervised learning. Experts can use logical rules to label unlabeled data, but this operation is costly. The combination of perception and reasoning has a good effect in processing such semi-supervised tasks with domain knowledge. However, acquiring domain knowledge and the correction, reduction and generation of rules remain complex problems to be solved. Rough set theory is an important method for solving knowledge processing in information systems. In this paper, we propose a rule general abductive learning by rough set (RS-ABL). By transforming the target concept and sub-concepts of rules into information tables, rough set theory is used to solve the acquisition of domain knowledge and the correction, reduction and generation of rules at a lower cost. This framework can also generate more extensive negative rules to enhance the breadth of the knowledge base. Compared with the traditional semi-supervised learning method, RS-ABL has higher accuracy in dealing with semi-supervised tasks.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.