A system vulnerability analysis technique (SVAT) for complex mission critical systems (CMCS) was developed in response to the need to be able to conduct penetration testing on large industrial systems which cannot be taken offline or risk disablement or impairment for conventional penetration testing. SVAT-CMCS facilitates the use of known vulnerability and exploit information, incremental testing of system components and data analysis techniques to identify attack pathways in CMCSs. This data can be utilized for corrective activities or to target controlled manual follow-up testing. This paper presents the SVAT-CMCS paradigm and describes its implementation in a software tool, which was built using the Blackboard Architecture, that can be utilized for attack pathway identification. The performance of this tool is characterized using three example models. In particular, it explores the path generation speed and the impact of link cap restrictions on system operations, under different levels of network size and complexity. Accurate fact-rule processing is also tested using these models. The results show significant decreases in path generation efficiency as the link cap and network complexity increase; however, rule processing accuracy is not impacted.
The Robot Operating System 2 (ROS 2) is rapidly impacting the intelligent machines sector -- on space missions, large agriculture equipment, multi-robot fleets, and more. Its success derives from its focused design and improved capabilities targeting product-grade and modern robotic systems. Following ROS 2's example, the mobile robotics ecosystem has been fully redesigned based on the transformed needs of modern robots and is experiencing active development not seen since its inception. This paper comes from the desks of the key ROS Navigation maintainers to review and analyze the state of the art of robotics navigation in ROS 2. This includes new systems without parallel in ROS 1 or other similar mobile robotics frameworks. We discuss current research products and historically robust methods that provide differing behaviors and support for most every robot type. This survey consists of overviews, comparisons, and expert insights organized by the fundamental problems in the field. Some of these implementations have yet to be described in literature and many have not been benchmarked relative to others. We end by providing a glimpse into the future of the ROS 2 mobile robotics ecosystem.
Stream processing has become a critical component in the architecture of modern applications. With the exponential growth of data generation from sources such as the Internet of Things, business intelligence, and telecommunications, real-time processing of unbounded data streams has become a necessity. DSP systems provide a solution to this challenge, offering high horizontal scalability, fault-tolerant execution, and the ability to process data streams from multiple sources in a single DSP job. Often enough though, data streams need to be enriched with extra information for correct processing, which introduces additional dependencies and potential bottlenecks. In this paper, we present an in-depth evaluation of data enrichment methods for DSP systems and identify the different use cases for stream processing in modern systems. Using a representative DSP system and conducting the evaluation in a realistic cloud environment, we found that outsourcing enrichment data to the DSP system can improve performance for specific use cases. However, this increased resource consumption highlights the need for stream processing solutions specifically designed for the performance-intensive workloads of cloud-based applications.
Most applications of Artificial Intelligence (AI) are designed for a confined and specific task. However, there are many scenarios that call for a more general AI, capable of solving a wide array of tasks without being specifically designed for them. The term General-Purpose Artificial Intelligence Systems (GPAIS) has been defined to refer to these AI systems. To date, the possibility of an Artificial General Intelligence, powerful enough to perform any intellectual task as if it were human, or even improve it, has remained an aspiration, fiction, and considered a risk for our society. Whilst we might still be far from achieving that, GPAIS is a reality and sitting at the forefront of AI research. This work discusses existing definitions for GPAIS and proposes a new definition that allows for a gradual differentiation among types of GPAIS according to their properties and limitations. We distinguish between closed-world and open-world GPAIS, characterising their degree of autonomy and ability based on several factors such as adaptation to new tasks, competence in domains not intentionally trained for, ability to learn from few data, or proactive acknowledgment of their own limitations. We then propose a taxonomy of approaches to realise GPAIS, describing research trends such as the use of AI techniques to improve another AI or foundation models. As a prime example, we delve into generative AI, aligning them with the terms and concepts presented in the taxonomy. Through the proposed definition and taxonomy, our aim is to facilitate research collaboration across different areas that are tackling general-purpose tasks, as they share many common aspects. Finally, we discuss the current state of GPAIS, its challenges and prospects, implications for our society, and the need for responsible and trustworthy AI systems and regulation, with the goal of providing a holistic view of GPAIS.
Modern computer systems are ubiquitous in contemporary life yet many of them remain opaque. This poses significant challenges in domains where desiderata such as fairness or accountability are crucial. We suggest that the best strategy for achieving system transparency varies depending on the specific source of opacity prevalent in a given context. Synthesizing and extending existing discussions, we propose a taxonomy consisting of eight sources of opacity that fall into three main categories: architectural, analytical, and socio-technical. For each source, we provide initial suggestions as to how to address the resulting opacity in practice. The taxonomy provides a starting point for requirements engineers and other practitioners to understand contextually prevalent sources of opacity, and to select or develop appropriate strategies for overcoming them.
Risk assessment plays a crucial role in ensuring the security and resilience of modern computer systems. Existing methods for conducting risk assessments often suffer from tedious and time-consuming processes, making it challenging to maintain a comprehensive overview of potential security issues. In this paper, we propose a novel approach that leverages attack graphs to enhance the efficiency and effectiveness of risk assessment. Attack graphs visually represent the various attack paths that adversaries can exploit within a system, enabling a systematic exploration of potential vulnerabilities. By extending attack graphs with capabilities to include countermeasures and consequences, they can be leveraged to constitute the complete risk assessment process. Our method offers a more streamlined and comprehensive analysis of system vulnerabilities, where system changes, or environment changes can easily be adapted and the issues exposing the highest risk can easily be identified. We demonstrate the effectiveness of our approach through a case study, as well as the applicability by combining existing risk assessment standards with our method. Our work aims to bridge the gap between risk assessment practices and evolving threat landscapes, offering an improved methodology for managing and mitigating risks in modern computer systems.
For smart homes to be safe homes, they must be designed with security in mind. Yet, despite the widespread proliferation of connected digital technologies in the home environment, there is a lack of research evaluating the security vulnerabilities and potential risks present within these systems. Our research presents a comprehensive methodology for conducting systematic IoT security attacks, intercepting network traffic and evaluating the security risks of smart home devices. We perform hundreds of automated experiments using 11 popular commercial IoT devices when deployed in a testbed, exposed to a series of real deployed attacks (flooding, port scanning and OS scanning). Our findings indicate that these devices are vulnerable to security attacks and our results are relevant to the security research community, device engineers and the users who rely on these technologies in their daily lives.
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.