Perturbed by natural hazards, community-level infrastructure networks operate like many-body systems, with behaviors emerging from coupling individual component dynamics with group correlations and interactions. It follows that we can borrow methods from statistical physics to study the response of infrastructure systems to natural disasters. This study aims to construct a joint probability distribution model to describe the post-hazard state of infrastructure networks and propose an efficient surrogate model of the joint distribution for large-scale systems. Specifically, we present maximum entropy modeling of the regional impact of natural hazards on civil infrastructures. Provided with the current state of knowledge, the principle of maximum entropy yields the ``most unbiased`` joint distribution model for the performances of infrastructures. In the general form, the model can handle multivariate performance states and higher-order correlations. In a particular yet typical scenario of binary performance state variables with knowledge of their mean and pairwise correlation, the joint distribution reduces to the Ising model in statistical physics. In this context, we propose using a dichotomized Gaussian model as an efficient surrogate for the maximum entropy model, facilitating the application to large systems. Using the proposed method, we investigate the seismic collective behavior of a large-scale road network (with 8,694 nodes and 26,964 links) in San Francisco, showcasing the non-trivial collective behaviors of infrastructure systems.
Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.
The lack of an available emotion pathology database is one of the key obstacles in studying the emotion expression status of patients with dysarthria. The first Chinese multimodal emotional pathological speech database containing multi-perspective information is constructed in this paper. It includes 29 controls and 39 patients with different degrees of motor dysarthria, expressing happy, sad, angry and neutral emotions. All emotional speech was labeled for intelligibility, types and discrete dimensional emotions by developed WeChat mini-program. The subjective analysis justifies from emotion discrimination accuracy, speech intelligibility, valence-arousal spatial distribution, and correlation between SCL-90 and disease severity. The automatic recognition tested on speech and glottal data, with average accuracy of 78% for controls and 60% for patients in audio, while 51% for controls and 38% for patients in glottal data, indicating an influence of the disease on emotional expression.
Due to their intrinsic capabilities on parallel signal processing, optical neural networks (ONNs) have attracted extensive interests recently as a potential alternative to electronic artificial neural networks (ANNs) with reduced power consumption and low latency. Preliminary confirmation of the parallelism in optical computing has been widely done by applying the technology of wavelength division multiplexing (WDM) in the linear transformation part of neural networks. However, inter-channel crosstalk has obstructed WDM technologies to be deployed in nonlinear activation in ONNs. Here, we propose a universal WDM structure called multiplexed neuron sets (MNS) which apply WDM technologies to optical neurons and enable ONNs to be further compressed. A corresponding back-propagation (BP) training algorithm is proposed to alleviate or even cancel the influence of inter-channel crosstalk on MNS-based WDM-ONNs. For simplicity, semiconductor optical amplifiers (SOAs) are employed as an example of MNS to construct a WDM-ONN trained with the new algorithm. The result shows that the combination of MNS and the corresponding BP training algorithm significantly downsize the system and improve the energy efficiency to tens of times while giving similar performance to traditional ONNs.
Image segmentation, real-value prediction, and cross-modal translation are critical challenges in medical imaging. In this study, we propose a versatile multi-task neural network framework, based on an enhanced Transformer U-Net architecture, capable of simultaneously, selectively, and adaptively addressing these medical image tasks. Validation is performed on a public repository of human brain MR and CT images. We decompose the traditional problem of synthesizing CT images into distinct subtasks, which include skull segmentation, Hounsfield unit (HU) value prediction, and image sequential reconstruction. To enhance the framework's versatility in handling multi-modal data, we expand the model with multiple image channels. Comparisons between synthesized CT images derived from T1-weighted and T2-Flair images were conducted, evaluating the model's capability to integrate multi-modal information from both morphological and pixel value perspectives.
Equivariant neural networks have considerably improved the accuracy and data-efficiency of predictions of molecular properties. Building on this success, we introduce EquiReact, an equivariant neural network to infer properties of chemical reactions, built from three-dimensional structures of reactants and products. We illustrate its competitive performance on the prediction of activation barriers on the GDB7-22-TS, Cyclo-23-TS and Proparg-21-TS datasets with different regimes according to the inclusion of atom-mapping information. We show that, compared to state-of-the-art models for reaction property prediction, EquiReact offers: (i) a flexible model with reduced sensitivity between atom-mapping regimes, (ii) better extrapolation capabilities to unseen chemistries, (iii) impressive prediction errors for datasets exhibiting subtle variations in three-dimensional geometries of reactants/products, (iv) reduced sensitivity to geometry quality and (iv) excellent data efficiency.
The symmetry of complex networks is a global property that has recently gained attention since MacArthur et al. 2008 showed that many real-world networks contain a considerable number of symmetries. These authors work with a very strict symmetry definition based on the network's automorphism. The potential problem with this approach is that even a slight change in the graph's structure can remove or create some symmetry. Recently, Liu 2020 proposed to use an approximate automorphism instead of strict automorphism. This method can discover symmetries in the network while accepting some minor imperfections in their structure. The proposed numerical method, however, exhibits some performance problems and has some limitations while it assumes the absence of fixed points. In this work, we exploit alternative approaches recently developed for treating the Graph Matching Problem and propose a method, which we will refer to as Quadratic Symmetry Approximator (QSA), to address the aforementioned shortcomings. To test our method, we propose a set of random graph models suitable for assessing a wide family of approximate symmetry algorithms. The performance of our method is also demonstrated on brain networks.
There are many unsolved problems in vascular image segmentation, including vascular structural connectivity, scarce branches and missing small vessels. Obtaining vessels that preserve their correct topological structures is currently a crucial research issue, as it provides an overall view of one vascular system. In order to preserve the topology and accuracy of vessel segmentation, we proposed a novel Morphology Edge Attention Network (MEA-Net) for the segmentation of vessel-like structures, and an Optimal Geometric Matching Connection (OGMC) model to connect the broken vessel segments. The MEA-Net has an edge attention module that improves the segmentation of edges and small objects by morphology operation extracting boundary voxels on multi-scale. The OGMC model uses the concept of curve touching from differential geometry to filter out fragmented vessel endpoints, and then employs minimal surfaces to determine the optimal connection order between blood vessels. Finally, we calculate the geodesic to repair missing vessels under a given Riemannian metric. Our method achieves superior or competitive results compared to state-of-the-art methods on four datasets of 3D vascular segmentation tasks, both effectively reducing vessel broken and increasing vessel branch richness, yielding blood vessels with a more precise topological structure.
Instance segmentation, an important image processing operation for automation in agriculture, is used to precisely delineate individual objects of interest within images, which provides foundational information for various automated or robotic tasks such as selective harvesting and precision pruning. This study compares the one-stage YOLOv8 and the two-stage Mask R-CNN machine learning models for instance segmentation under varying orchard conditions across two datasets. Dataset 1, collected in dormant season, includes images of dormant apple trees, which were used to train multi-object segmentation models delineating tree branches and trunks. Dataset 2, collected in the early growing season, includes images of apple tree canopies with green foliage and immature (green) apples (also called fruitlet), which were used to train single-object segmentation models delineating only immature green apples. The results showed that YOLOv8 performed better than Mask R-CNN, achieving good precision and near-perfect recall across both datasets at a confidence threshold of 0.5. Specifically, for Dataset 1, YOLOv8 achieved a precision of 0.90 and a recall of 0.95 for all classes. In comparison, Mask R-CNN demonstrated a precision of 0.81 and a recall of 0.81 for the same dataset. With Dataset 2, YOLOv8 achieved a precision of 0.93 and a recall of 0.97. Mask R-CNN, in this single-class scenario, achieved a precision of 0.85 and a recall of 0.88. Additionally, the inference times for YOLOv8 were 10.9 ms for multi-class segmentation (Dataset 1) and 7.8 ms for single-class segmentation (Dataset 2), compared to 15.6 ms and 12.8 ms achieved by Mask R-CNN's, respectively.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.
Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.