When considered as a standalone iterative solver for elliptic boundary value problems, the Dirichlet-Neumann (DN) method is known to converge geometrically for domain decompositions into strips, even for a large number of subdomains. However, whenever the domain decomposition includes cross-points, i.e.$\!$ points where more than two subdomains meet, the convergence proof does not hold anymore as the method generates subproblems that might not be well-posed. Focusing on a simple two-dimensional example involving one cross-point, we proposed in a previous work a decomposition of the solution into two parts: an even symmetric part and an odd symmetric part. Based on this decomposition, we proved that the DN method was geometrically convergent for the even symmetric part and that it was not well-posed for the odd symmetric part. Here, we introduce a new variant of the DN method which generates subproblems that remain well-posed for the odd symmetric part as well. Taking advantage of the symmetry properties of the domain decomposition considered, we manage to prove that our new method converges geometrically in the presence of cross-points. We also extend our results to the three-dimensional case, and present numerical experiments that illustrate our theoretical findings.
Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.
Linearization of the dynamics of recurrent neural networks (RNNs) is often used to study their properties. The same RNN dynamics can be written in terms of the ``activations" (the net inputs to each unit, before its pointwise nonlinearity) or in terms of the ``activities" (the output of each unit, after its pointwise nonlinearity); the two corresponding linearizations are different from each other. This brief and informal technical note describes the relationship between the two linearizations, between the left and right eigenvectors of their dynamics matrices, and shows that some context-dependent effects are readily apparent under linearization of activity dynamics but not linearization of activation dynamics.
As we are aware, various types of methods have been proposed to approximate the Caputo fractional derivative numerically. A common challenge of the methods is the non-local property of the Caputo fractional derivative which leads to the slow and memory consuming methods. Diffusive representation of fractional derivative is an efficient tool to overcome the mentioned challenge. This paper presents two new diffusive representations to approximate the Caputo fractional derivative of order $0<\alpha<1$. Error analysis of the newly presented methods together with some numerical examples are provided at the end.
The generation of curves and surfaces from given data is a well-known problem in Computer-Aided Design that can be approached using subdivision schemes. They are powerful tools that allow obtaining new data from the initial one by means of simple calculations. However, in some applications, the collected data are given with noise and most of schemes are not adequate to process them. In this paper, we present some new families of binary univariate linear subdivision schemes using weighted local polynomial regression. We study their properties, such as convergence, monotonicity, polynomial reproduction and approximation and denoising capabilities. For the convergence study, we develop some new theoretical results. Finally, some examples are presented to confirm the proven properties.
A general class of the almost instantaneous fixed-to-variable-length (AIFV) codes is proposed, which contains every possible binary code we can make when allowing finite bits of decoding delay. The contribution of the paper lies in the following. (i) Introducing $N$-bit-delay AIFV codes, constructed by multiple code trees with higher flexibility than the conventional AIFV codes. (ii) Proving that the proposed codes can represent any uniquely-encodable and uniquely-decodable variable-to-variable length codes. (iii) Showing how to express codes as multiple code trees with minimum decoding delay. (iv) Formulating the constraints of decodability as the comparison of intervals in the real number line. The theoretical results in this paper are expected to be useful for further study on AIFV codes.
The objective of the multi-condition human motion synthesis task is to incorporate diverse conditional inputs, encompassing various forms like text, music, speech, and more. This endows the task with the capability to adapt across multiple scenarios, ranging from text-to-motion and music-to-dance, among others. While existing research has primarily focused on single conditions, the multi-condition human motion generation remains underexplored. In this paper, we address these challenges by introducing MCM, a novel paradigm for motion synthesis that spans multiple scenarios under diverse conditions. The MCM framework is able to integrate with any DDPM-like diffusion model to accommodate multi-conditional information input while preserving its generative capabilities. Specifically, MCM employs two-branch architecture consisting of a main branch and a control branch. The control branch shares the same structure as the main branch and is initialized with the parameters of the main branch, effectively maintaining the generation ability of the main branch and supporting multi-condition input. We also introduce a Transformer-based diffusion model MWNet (DDPM-like) as our main branch that can capture the spatial complexity and inter-joint correlations in motion sequences through a channel-dimension self-attention module. Quantitative comparisons demonstrate that our approach achieves SoTA results in both text-to-motion and competitive results in music-to-dance tasks, comparable to task-specific methods. Furthermore, the qualitative evaluation shows that MCM not only streamlines the adaptation of methodologies originally designed for text-to-motion tasks to domains like music-to-dance and speech-to-gesture, eliminating the need for extensive network re-configurations but also enables effective multi-condition modal control, realizing "once trained is motion need".
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.
We consider the numerical evaluation of a class of double integrals with respect to a pair of self-similar measures over a self-similar fractal set (the attractor of an iterated function system), with a weakly singular integrand of logarithmic or algebraic type. In a recent paper [Gibbs, Hewett and Moiola, Numer. Alg., 2023] it was shown that when the fractal set is "disjoint" in a certain sense (an example being the Cantor set), the self-similarity of the measures, combined with the homogeneity properties of the integrand, can be exploited to express the singular integral exactly in terms of regular integrals, which can be readily approximated numerically. In this paper we present a methodology for extending these results to cases where the fractal is non-disjoint but non-overlapping (in the sense that the open set condition holds). Our approach applies to many well-known examples including the Sierpinski triangle, the Vicsek fractal, the Sierpinski carpet, and the Koch snowflake.
We prove a discrete analogue for the composition of the fractional integral and Caputo derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evaluation of the discrete sums with the use of the Euler-Maclaurin summation formula.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. Firstly, we analyze the symplectic conditions for two kinds of exponential integrators and obtain the symplectic method. In order to effectively solve highly oscillatory problems, we try to design the highly accurate implicit ERK integrators. By comparing the Taylor series expansion of numerical solution with exact solution, it can be verified that the order conditions of two new kinds of exponential methods are identical to classical Runge-Kutta (RK) methods, which implies that using the coefficients of RK methods, some highly accurate numerical methods are directly formulated. Furthermore, we also investigate the linear stability properties for these exponential methods. Finally, numerical results not only display the long time energy preservation of the symplectic method, but also present the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.