亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In minimum power network design problems we are given an undirected graph $G=(V,E)$ with edge costs $\{c_e:e \in E\}$. The goal is to find an edge set $F\subseteq E$ that satisfies a prescribed property of minimum power $p_c(F)=\sum_{v \in V} \max \{c_e: e \in F \mbox{ is incident to } v\}$. In the Min-Power $k$ Edge Disjoint $st$-Paths problem $F$ should contains $k$ edge disjoint $st$-paths. The problem admits a $k$-approximation algorithm, and it was an open question whether it admits approximation ratio sublinear in $k$ even for unit costs. We give a $2\sqrt{2k}$-approximation algorithm for general costs.

相關內容

One of the major open problems in complexity theory is to demonstrate an explicit function which requires super logarithmic depth, a.k.a, the $\mathbf{P}$ versus $\mathbf{NC^1}$ problem. The current best depth lower bound is $(3-o(1))\cdot \log n$, and it is widely open how to prove a super-$3\log n$ depth lower bound. Recently Mihajlin and Sofronova (CCC'22) show if considering formulas with restriction on top, we can break the $3\log n$ barrier. Formally, they prove there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<0.4$ and constant $0<\epsilon<\alpha/2$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{(\alpha-\epsilon)n}$ formulas of size at most $2^{(1-\alpha/2-\epsilon)n}$. This implies a modified version of Andreev function is not computable by any circuit of depth $(3.2-\epsilon)\log n$ with the restriction that top $0.4-\epsilon$ layers only consist of AND gates for any small constant $\epsilon>0$. They ask whether the parameter $\alpha$ can be push up to nearly $1$ thus implying a nearly-$3.5\log n$ depth lower bound. In this paper, we provide a stronger answer to their question. We show there exist two functions $f:\{0,1\}^n \rightarrow \{0,1\},g:\{0,1\}^n \rightarrow \{0,1\}^n$, such that for any constant $0<\alpha<2-o(1)$, their XOR composition $f(g(x)\oplus y)$ is not computable by an AND of $2^{\alpha n}$ formulas of size at most $2^{(1-\alpha/2-o(1))n}$. This implies a $(4-o(1))\log n$ depth lower bound with the restriction that top $2-o(1)$ layers only consist of AND gates. We prove it by observing that one crucial component in Mihajlin and Sofronova's work, called the well-mixed set of functions, can be significantly simplified thus improved. Then with this observation and a more careful analysis, we obtain these nearly tight results.

We study the asymptotic eigenvalue distribution of the Slepian spatiospectral concentration problem within subdomains of the $d$-dimensional unit ball $\mathbb{B}^d$. The clustering of the eigenvalues near zero and one is a well-known phenomenon. Here, we provide an analytical investigation of this phenomenon for two different notions of bandlimit: (a) multivariate polynomials, with the maximal polynomial degree determining the bandlimit, (b) basis functions that separate into radial and spherical contributions (expressed in terms of Jacobi polynomials and spherical harmonics, respectively), with separate maximal degrees for the radial and spherical contributions determining the bandlimit. In particular, we investigate the number of relevant non-zero eigenvalues (the so-called Shannon number) and obtain distinct asymptotic results for both notions of bandlimit, characterized by Jacobi weights $W_0$ and a modification $\widetilde{W_0}$, respectively. The analytic results are illustrated by numerical examples on the 3-d ball.

We investigate inexact proximity operators for weakly convex functions. To this aim, we derive sum rules for proximal {\epsilon}-subdifferentials, by incorporating the moduli of weak convexity of the functions into the respective formulas. This allows us to investigate inexact proximity operators for weakly convex functions in terms of proximal {\epsilon}-subdifferentials.

We derive eigenvalue bounds for the $t$-distance chromatic number of a graph, which is a generalization of the classical chromatic number. We apply such bounds to hypercube graphs, providing alternative spectral proofs for results by Ngo, Du and Graham [Inf. Process. Lett., 2002], and improving their bound for several instances. We also apply the eigenvalue bounds to Lee graphs, extending results by Kim and Kim [Discrete Appl. Math., 2011]. Finally, we provide a complete characterization for the existence of perfect Lee codes of minimum distance $3$. In order to prove our results, we use a mix of spectral and number theory tools. Our results, which provide the first application of spectral methods to Lee codes, illustrate that such methods succeed to capture the nature of the Lee metric.

For a graph $G$, a $D$-diameter-reducing exact hopset is a small set of additional edges $H$ that, when added to $G$, maintains its graph metric but guarantees that all node pairs have a shortest path in $G \cup H$ using at most $D$ edges. A shortcut set is the analogous concept for reachability. These objects have been studied since the early '90s due to applications in parallel, distributed, dynamic, and streaming graph algorithms. For most of their history, the state-of-the-art construction for either object was a simple folklore algorithm, based on randomly sampling nodes to hit long paths in the graph. However, recent breakthroughs of Kogan and Parter [SODA '22] and Bernstein and Wein [SODA '23] have finally improved over the folklore diameter bound of $\widetilde{O}(n^{1/2})$ for shortcut sets and for $(1+\epsilon)$-approximate hopsets. For both objects it is now known that one can use $O(n)$ hop-edges to reduce diameter to $\widetilde{O}(n^{1/3})$. The only setting where folklore sampling remains unimproved is for exact hopsets. Can these improvements be continued? We settle this question negatively by constructing graphs on which any exact hopset of $O(n)$ edges has diameter $\widetilde{\Omega}(n^{1/2})$. This improves on the previous lower bound of $\widetilde{\Omega}(n^{1/3})$ by Kogan and Parter [FOCS '22]. Using similar ideas, we also polynomially improve the current lower bounds for shortcut sets, constructing graphs on which any shortcut set of $O(n)$ edges reduces diameter to $\widetilde{\Omega}(n^{1/4})$. This improves on the previous lower bound of $\Omega(n^{1/6})$ by Huang and Pettie [SIAM J. Disc. Math. '18]. We also extend our constructions to provide lower bounds against $O(p)$-size exact hopsets and shortcut sets for other values of $p$; in particular, we show that folklore sampling is near-optimal for exact hopsets in the entire range of $p \in [1, n^2]$.

We determine all functional closure properties of finite $\mathbb{N}$-weighted automata, even all multivariate ones, and in particular all multivariate polynomials. We also determine all univariate closure properties in the promise setting, and all multivariate closure properties under certain assumptions on the promise, in particular we determine all multivariate closure properties where the output vector lies on a monotone algebraic graph variety.

Kalai's $3^d$ conjecture states that every centrally-symmetric $d$-polytope has at least $3^d$ faces. We give short proofs for two special cases: if $P$ is unconditional (that is, invariant w.r.t. reflection in any coordinate hyperplane), and more generally, if $P$ is locally anti-blocking. In both cases we show that the minimum is attained exactly for the Hanner polytopes.

This paper presents new upper bounds on the rate of linear $k$-hash codes in $\mathbb{F}_q^n$, $q\geq k$, that is, codes with the property that any $k$ distinct codewords are all simultaneously distinct in at least one coordinate.

We propose a novel statistical test to assess the mutual independence of multidimensional random vectors. Our approach is based on the $L_1$-distance between the joint density function and the product of the marginal densities associated with the presumed independent vectors. Under the null hypothesis, we employ Poissonization techniques to establish the asymptotic normal approximation of the corresponding test statistic, without imposing any regularity assumptions on the underlying Lebesgue density function, denoted as $f(\cdot)$. Remarkably, we observe that the limiting distribution of the $L_1$-based statistics remains unaffected by the specific form of $f(\cdot)$. This unexpected outcome contributes to the robustness and versatility of our method. Moreover, our tests exhibit nontrivial local power against a subset of local alternatives, which converge to the null hypothesis at a rate of {${\tiny n^{\tiny -1/2}h_n^{\tiny -{d/4}}}$}, $d\geq 2$, where $n$ represents the sample size and $h_n$ denotes the bandwidth. Finally, the theory is supported by a comprehensive simulation study to investigate the finite-sample performance of our proposed test. The results demonstrate that our testing procedure generally outperforms existing approaches across various examined scenarios.

We show that there is a constant $k$ such that Buss's intuitionistic theory $\mathsf{IS}^1_2$ does not prove that SAT requires co-nondeterministic circuits of size at least $n^k$. To our knowledge, this is the first unconditional unprovability result in bounded arithmetic in the context of worst-case fixed-polynomial size circuit lower bounds. We complement this result by showing that the upper bound $\mathsf{NP} \subseteq \mathsf{coNSIZE}[n^k]$ is unprovable in $\mathsf{IS}^1_2$.

北京阿比特科技有限公司