The topology of the Internet and its geographic properties received significant attention during the last years, not only because they have a deep impact on the performance experienced by users, but also because of legal, political, and economic reasons. In this paper, the global Internet is studied in terms of path locality, where a path is defined as local if it does not cross the borders of the region where the source and destination hosts are located. The phenomenon is studied from the points of view of two metrics, one based on the size of the address space of the autonomous systems where the endpoints are located and the other one on the amount of served population. Results show that the regions of the world are characterized by significant differences in terms of path locality. The main elements contributing to the path locality, and non-locality, of the regions and countries, are identified and discussed. Finally, we present the most significant dependency relationships between countries caused by non-local paths.
RRAM-based multi-core systems improve the energy efficiency and performance of CNNs. Thereby, the distributed parallel execution of convolutional layers causes critical data dependencies that limit the potential speedup. This paper presents synchronization techniques for parallel inference of convolutional layers on RRAM-based CIM architectures. We propose an architecture optimization that enables efficient data exchange and discuss the impact of different architecture setups on the performance. The corresponding compiler algorithms are optimized for high speedup and low memory consumption during CNN inference. We achieve more than 99% of the theoretical acceleration limit with a marginal data transmission overhead of less than 4% for state-of-the-art CNN benchmarks.
Malicious communication behavior is the network communication behavior generated by malware (bot-net, spyware, etc.) after victim devices are infected. Experienced adversaries often hide malicious information in HTTP traffic to evade detection. However, related detection methods have inadequate generalization ability because they are usually based on artificial feature engineering and outmoded datasets. In this paper, we propose an HTTP-based Malicious Communication traffic Detection Model (HMCD-Model) based on generated adversarial flows and hierarchical traffic features. HMCD-Model consists of two parts. The first is a generation algorithm based on WGAN-GP to generate HTTP-based malicious communication traffic for data enhancement. The second is a hybrid neural network based on CNN and LSTM to extract hierarchical spatial-temporal features of traffic. In addition, we collect and publish a dataset, HMCT-2020, which consists of large-scale malicious and benign traffic during three years (2018-2020). Taking the data in HMCT-2020(18) as the training set and the data in other datasets as the test set, the experimental results show that the HMCD-Model can effectively detect unknown HTTP-based malicious communication traffic. It can reach F1 = 98.66% in the dataset HMCT-2020(19-20), F1 = 90.69% in the public dataset CIC-IDS-2017, and F1 = 83.66% in the real traffic, which is 20+% higher than other representative methods on average. This validates that HMCD-Model has the ability to discover unknown HTTP-based malicious communication behavior.
Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to either 0 or 1. This is the case, for example, for the commonly used QR codes. The {\it a priori} information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. This paper addresses, both theoretically and numerically, the problem of recovery of blurred images without any known structure whose high-frequency DFT coefficients have been irreversibly lost by utilizing the binarity constraint. We investigate theoretically the smallest band limit for which unique recovery of a generic binary matrix is still possible. Uniqueness results are proved for images of sizes $N_1 \times N_2$, $N_1 \times N_1$, and $N_1^\alpha\times N_1^\alpha$, where $N_1 \neq N_2$ are prime numbers and $\alpha>1$ an integer. Inversion algorithms are proposed for recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred $29 \times 29$ binary matrices with only $11\times 11 = 121$ DFT coefficients.
Atmospheric retrievals (AR) of exoplanets typically rely on a combination of a Bayesian inference technique and a forward simulator to estimate atmospheric properties from an observed spectrum. A key component in simulating spectra is the pressure-temperature (PT) profile, which describes the thermal structure of the atmosphere. Current AR pipelines commonly use ad hoc fitting functions here that limit the retrieved PT profiles to simple approximations, but still use a relatively large number of parameters. In this work, we introduce a conceptually new, data-driven parameterization scheme for physically consistent PT profiles that does not require explicit assumptions about the functional form of the PT profiles and uses fewer parameters than existing methods. Our approach consists of a latent variable model (based on a neural network) that learns a distribution over functions (PT profiles). Each profile is represented by a low-dimensional vector that can be used to condition a decoder network that maps $P$ to $T$. When training and evaluating our method on two publicly available datasets of self-consistent PT profiles, we find that our method achieves, on average, better fit quality than existing baseline methods, despite using fewer parameters. In an AR based on existing literature, our model (using two parameters) produces a tighter, more accurate posterior for the PT profile than the five-parameter polynomial baseline, while also speeding up the retrieval by more than a factor of three. By providing parametric access to physically consistent PT profiles, and by reducing the number of parameters required to describe a PT profile (thereby reducing computational cost or freeing resources for additional parameters of interest), our method can help improve AR and thus our understanding of exoplanet atmospheres and their habitability.
Several new network information dimension definitions have been proposed in recent decades, expanding the scope of applicability of this seminal tool. This paper proposes a new definition based on Deng entropy and d-summability (a concept from geometric measure theory). We will prove to what extent the new formulation will be useful in the theoretical and applied points of view.
A new generalization of Reed-Solomon codes is given. This new generalization has similar information rate bound and similar distance rate bound as BCH codes. It also approaches to the Gilbert bound as Goppa codes. Nevertheless, decoding these new codes is much faster than decoding BCH codes.
Recently, a stability theory has been developed to study the linear stability of modified Patankar--Runge--Kutta (MPRK) schemes. This stability theory provides sufficient conditions for a fixed point of an MPRK scheme to be stable as well as for the convergence of an MPRK scheme towards the steady state of the corresponding initial value problem, whereas the main assumption is that the initial value is sufficiently close to the steady state. Initially, numerical experiments in several publications indicated that these linear stability properties are not only local, but even global, as is the case for general linear methods. Recently, however, it was discovered that the linear stability of the MPDeC(8) scheme is indeed only local in nature. Our conjecture is that this is a result of negative Runge--Kutta (RK) parameters of MPDeC(8) and that linear stability is indeed global, if the RK parameters are nonnegative. To support this conjecture, we examine the family of MPRK22($\alpha$) methods with negative RK parameters and show that even among these methods there are methods for which the stability properties are only local. However, this local linear stability is not observed for MPRK22($\alpha$) schemes with nonnegative Runge-Kutta parameters.
Trojans are one of the most threatening network attacks currently. HTTP-based Trojan, in particular, accounts for a considerable proportion of them. Moreover, as the network environment becomes more complex, HTTP-based Trojan is more concealed than others. At present, many intrusion detection systems (IDSs) are increasingly difficult to effectively detect such Trojan traffic due to the inherent shortcomings of the methods used and the backwardness of training data. Classical anomaly detection and traditional machine learning-based (TML-based) anomaly detection are highly dependent on expert knowledge to extract features artificially, which is difficult to implement in HTTP-based Trojan traffic detection. Deep learning-based (DL-based) anomaly detection has been locally applied to IDSs, but it cannot be transplanted to HTTP-based Trojan traffic detection directly. To solve this problem, in this paper, we propose a neural network detection model (HSTF-Model) based on hierarchical spatiotemporal features of traffic. Meanwhile, we combine deep learning algorithms with expert knowledge through feature encoders and statistical characteristics to improve the self-learning ability of the model. Experiments indicate that F1 of HSTF-Model can reach 99.4% in real traffic. In addition, we present a dataset BTHT consisting of HTTP-based benign and Trojan traffic to facilitate related research in the field.
I consider the natural infinitary variations of the games Wordle and Mastermind, as well as their game-theoretic variations Absurdle and Madstermind, considering these games with infinitely long words and infinite color sequences and allowing transfinite game play. For each game, a secret codeword is hidden, which the codebreaker attempts to discover by making a series of guesses and receiving feedback as to their accuracy. In Wordle with words of any size from a finite alphabet of $n$ letters, including infinite words or even uncountable words, the codebreaker can nevertheless always win in $n$ steps. Meanwhile, the mastermind number, defined as the smallest winning set of guesses in infinite Mastermind for sequences of length $\omega$ over a countable set of colors without duplication, is uncountable, but the exact value turns out to be independent of ZFC, for it is provably equal to the eventually different number $\frak{d}({\neq^*})$, which is the same as the covering number of the meager ideal $\text{cov}(\mathcal{M})$. I thus place all the various mastermind numbers, defined for the natural variations of the game, into the hierarchy of cardinal characteristics of the continuum.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.