Online speech recognition, where the model only accesses context to the left, is an important and challenging use case for ASR systems. In this work, we investigate augmenting neural encoders for online ASR by incorporating structured state-space sequence models (S4), which are a family of models that provide a parameter-efficient way of accessing arbitrarily long left context. We perform systematic ablation studies to compare variants of S4 models and propose two novel approaches that combine them with convolutions. We find that the most effective design is to stack a small S4 using real-valued recurrent weights with a local convolution, allowing them to work complementarily. Our best model achieves WERs of 4.01%/8.53% on test sets from Librispeech, outperforming Conformers with extensively tuned convolution.
Text-to-image diffusion models show great potential in synthesizing a large variety of concepts in new compositions and scenarios. However, the latent space of initial seeds is still not well understood and its structure was shown to impact the generation of various concepts. Specifically, simple operations like interpolation and finding the centroid of a set of seeds perform poorly when using standard Euclidean or spherical metrics in the latent space. This paper makes the observation that, in current training procedures, diffusion models observed inputs with a narrow range of norm values. This has strong implications for methods that rely on seed manipulation for image generation, with applications to few-shot and long-tail learning tasks. To address this issue, we propose a novel method for interpolating between two seeds and demonstrate that it defines a new non-Euclidean metric that takes into account a norm-based prior on seeds. We describe a simple yet efficient algorithm for approximating this interpolation procedure and use it to further define centroids in the latent seed space. We show that our new interpolation and centroid techniques significantly enhance the generation of rare concept images. This further leads to state-of-the-art performance on few-shot and long-tail benchmarks, improving prior approaches in terms of generation speed, image quality, and semantic content.
Motivated by models of human decision making proposed to explain commonly observed deviations from conventional expected value preferences, we formulate two stochastic multi-armed bandit problems with distorted probabilities on the reward distributions: the classic $K$-armed bandit and the linearly parameterized bandit settings. We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits. For the regret minimization setting in $K$-armed as well as linear bandit problems, we propose algorithms that are inspired by Upper Confidence Bound (UCB) algorithms, incorporate reward distortions, and exhibit sublinear regret. For the $K$-armed bandit setting, we derive an upper bound on the expected regret for our proposed algorithm, and then we prove a matching lower bound to establish the order-optimality of our algorithm. For the linearly parameterized setting, our algorithm achieves a regret upper bound that is of the same order as that of regular linear bandit algorithm called Optimism in the Face of Uncertainty Linear (OFUL) bandit algorithm, and unlike OFUL, our algorithm handles distortions and an arm-dependent noise model. For the best arm identification problem in the $K$-armed bandit setting, we propose algorithms, derive guarantees on their performance, and also show that these algorithms are order optimal by proving matching fundamental limits on performance. For best arm identification in linear bandits, we propose an algorithm and establish sample complexity guarantees. Finally, we present simulation experiments which demonstrate the advantages resulting from using distortion-aware learning algorithms in a vehicular traffic routing application.
This contribution introduces a model order reduction approach for an advection-reaction problem with a parametrized reaction function. The underlying discretization uses an ultraweak formulation with an $L^2$-like trial space and an 'optimal' test space as introduced by Demkowicz et al. This ensures the stability of the discretization and in addition allows for a symmetric reformulation of the problem in terms of a dual solution which can also be interpreted as the normal equations of an adjoint least-squares problem. Classic model order reduction techniques can then be applied to the space of dual solutions which also immediately gives a reduced primal space. We show that the necessary computations do not require the reconstruction of any primal solutions and can instead be performed entirely on the space of dual solutions. We prove exponential convergence of the Kolmogorov $N$-width and show that a greedy algorithm produces quasi-optimal approximation spaces for both the primal and the dual solution space. Numerical experiments based on the benchmark problem of a catalytic filter confirm the applicability of the proposed method.
The scaled boundary finite element method (SBFEM) has recently been employed as an efficient means to model three-dimensional structures, in particular when the geometry is provided as a voxel-based image. To this end, an octree decomposition of the computational domain is deployed and each cubic cell is treated as an SBFEM subdomain. The surfaces of each subdomain are discretized in the finite element sense. We improve on this idea by combining the semi-analytical concept of the SBFEM with certain transition elements on the subdomains' surfaces. Thus, we avoid the triangulation of surfaces employed in previous works and consequently reduce the number of surface elements and degrees of freedom. In addition, these discretizations allow coupling elements of arbitrary order such that local p-refinement can be achieved straightforwardly.
Computer model calibration involves using partial and imperfect observations of the real world to learn which values of a model's input parameters lead to outputs that are consistent with real-world observations. When calibrating models with high-dimensional output (e.g. a spatial field), it is common to represent the output as a linear combination of a small set of basis vectors. Often, when trying to calibrate to such output, what is important to the credibility of the model is that key emergent physical phenomena are represented, even if not faithfully or in the right place. In these cases, comparison of model output and data in a linear subspace is inappropriate and will usually lead to poor model calibration. To overcome this, we present kernel-based history matching (KHM), generalising the meaning of the technique sufficiently to be able to project model outputs and observations into a higher-dimensional feature space, where patterns can be compared without their location necessarily being fixed. We develop the technical methodology, present an expert-driven kernel selection algorithm, and then apply the techniques to the calibration of boundary layer clouds for the French climate model IPSL-CM.
Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions - the conditional denoising estimator - can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.
We analyse a second-order SPDE model in multiple space dimensions and develop estimators for the parameters of this model based on discrete observations of a solution in time and space on a bounded domain. While parameter estimation for one and two spatial dimensions was established in recent literature, this is the first work which generalizes the theory to a general, multi-dimensional framework. Our approach builds upon realized volatilities, enabling the construction of an oracle estimator for volatility within the underlying model. Furthermore, we show that the realized volatilities have an asymptotic illustration as response of a log-linear model with spatial explanatory variable. This yields novel and efficient estimators based on realized volatilities with optimal rates of convergence and minimal variances. For proving central limit theorems, we use a high-frequency observation scheme. To showcase our results, we conduct a Monte Carlo simulation.