In many scenarios, configurators support the configuration of a solution that satisfies the preferences of a single user. The concept of \emph{multi-configuration} is based on the idea of configuring a set of configurations. Such a functionality is relevant in scenarios such as the configuration of personalized exams, the configuration of project teams, and the configuration of different trips for individual members of a tourist group (e.g., when visiting a specific city). In this paper, we exemplify the application of multi-configuration for generating individualized exams. We also provide a constraint solver performance analysis which helps to gain some insights into corresponding performance issues.
In large-scale datacenters, memory failure is a common cause of server crashes, with uncorrectable errors (UEs) being a major indicator of Dual Inline Memory Module (DIMM) defects. Existing approaches primarily focus on predicting UEs using correctable errors (CEs), without fully considering the information provided by error bits. However, error bit patterns have a strong correlation with the occurrence of uncorrectable errors (UEs). In this paper, we present a comprehensive study on the correlation between CEs and UEs, specifically emphasizing the importance of spatio-temporal error bit information. Our analysis reveals a strong correlation between spatio-temporal error bits and UE occurrence. Through evaluations using real-world datasets, we demonstrate that our approach significantly improves prediction performance by 15% in F1-score compared to the state-of-the-art algorithms. Overall, our approach effectively reduces the number of virtual machine interruptions caused by UEs by approximately 59%.
As mobile app usage continues to rise, so does the generation of extensive user interaction data, which includes actions such as swiping, zooming, or the time spent on a screen. Apps often collect a large amount of this data and claim to anonymize it, yet concerns arise regarding the adequacy of these measures. In many cases, the so-called anonymized data still has the potential to profile and, in some instances, re-identify individual users. This situation is compounded by a lack of transparency, leading to potential breaches of user trust. Our work investigates the gap between privacy policies and actual app behavior, focusing on the collection and handling of user interaction data. We analyzed the top 100 apps across diverse categories using static analysis methods to evaluate the alignment between policy claims and implemented data collection techniques. Our findings highlight the lack of transparency in data collection and the associated risk of re-identification, raising concerns about user privacy and trust. This study emphasizes the importance of clear communication and enhanced transparency in privacy practices for mobile app development.
We study building embodied agents for open-ended creative tasks. While existing methods build instruction-following agents that can perform diverse open-ended tasks, none of them demonstrates creativity -- the ability to give novel and diverse task solutions implicit in the language instructions. This limitation comes from their inability to convert abstract language instructions into concrete task goals in the environment and perform long-horizon planning for such complicated goals. Given the observation that humans perform creative tasks with the help of imagination, we propose a class of solutions for creative agents, where the controller is enhanced with an imaginator that generates detailed imaginations of task outcomes conditioned on language instructions. We introduce several approaches to implementing the components of creative agents. We implement the imaginator with either a large language model for textual imagination or a diffusion model for visual imagination. The controller can either be a behavior-cloning policy learned from data or a pre-trained foundation model generating executable codes in the environment. We benchmark creative tasks with the challenging open-world game Minecraft, where the agents are asked to create diverse buildings given free-form language instructions. In addition, we propose novel evaluation metrics for open-ended creative tasks utilizing GPT-4V, which holds many advantages over existing metrics. We perform a detailed experimental analysis of creative agents, showing that creative agents are the first AI agents accomplishing diverse building creation in the survival mode of Minecraft. Our benchmark and models are open-source for future research on creative agents (//github.com/PKU-RL/Creative-Agents).
Deploying unmanned aerial vehicle (UAV) networks to provide coverage for outdoor users has attracted great attention during the last decade. However, outdoor coverage is challenging due to the high mobility of crowds and the diverse terrain configurations causing building blockage. Most studies use stochastic channel models to characterize the impact of building blockage on user performance and do not take into account terrain information. On the other hand, real-time search methods use terrain information, but they are only practical when a single UAV serves a single user.In this paper, we put forward two methods to avoid building blockage in a multi-user system by collecting prior terrain information and using real-time search.We proposed four algorithms related to the combinations of the above methods and their performances are evaluated and compared in different scenarios.By adjusting the height of the UAV based on terrain information collected before networking, the performance is significantly enhanced compared to the one when no terrain information is available.The algorithm based on real-time search further improves the coverage performance by avoiding the shadow of buildings. During the execution of the real-time search algorithm, the search distance is reduced using the collected terrain information.
Image Retrieval aims to retrieve corresponding images based on a given query. In application scenarios, users intend to express their retrieval intent through various query styles. However, current retrieval tasks predominantly focus on text-query retrieval exploration, leading to limited retrieval query options and potential ambiguity or bias in user intention. In this paper, we propose the Style-Diversified Query-Based Image Retrieval task, which enables retrieval based on various query styles. To facilitate the novel setting, we propose the first Diverse-Style Retrieval dataset, encompassing diverse query styles including text, sketch, low-resolution, and art. We also propose a light-weighted style-diversified retrieval framework. For various query style inputs, we apply the Gram Matrix to extract the query's textural features and cluster them into a style space with style-specific bases. Then we employ the style-init prompt tuning module to enable the visual encoder to comprehend the texture and style information of the query. Experiments demonstrate that our model, employing the style-init prompt tuning strategy, outperforms existing retrieval models on the style-diversified retrieval task. Moreover, style-diversified queries~(sketch+text, art+text, etc) can be simultaneously retrieved in our model. The auxiliary information from other queries enhances the retrieval performance within the respective query.
FeltingReel is a soft fabrication system that allows users to create a 3D non-woven textile with various structural strengths. Our system coils wool yarn onto a central reel to form a basic shape and uses actuated barbed needles to refine it. By controlling the coiling tension and the felting times, our system varies the density of the workpiece in a target area to achieve various structural strengths. Specifically, our system controls the tilt of coiling and felting using a Stewart platform around a motorized rotating reel. Our system also allows different basic shapes with hollow internal structures to be formed by changing the detachable reel core. We investigate the effects of different felting needles, frequencies, and coiling directions that influence the density, structural strength, and fabrication time of a workpiece. We propose three methods to combine felting and reeling. We evaluate their performances and final products by producing two example workpieces using our system. We demonstrate several objects made by our working system and discuss its capabilities and limitations.
Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos, however, is a tedious manual process, which can be automated by emerging text-to-video diffusion models. Despite great promise, video diffusion models are difficult to control, hindering a user to apply their own creativity rather than amplifying it. To address this challenge, we present a novel approach that combines the controllability of dynamic 3D meshes with the expressivity and editability of emerging diffusion models. For this purpose, our approach takes an animated, low-fidelity rendered mesh as input and injects the ground truth correspondence information obtained from the dynamic mesh into various stages of a pre-trained text-to-image generation model to output high-quality and temporally consistent frames. We demonstrate our approach on various examples where motion can be obtained by animating rigged assets or changing the camera path.
The security of microcontrollers, which drive modern IoT and embedded devices, continues to raise major concerns. Within a microcontroller (MCU), the firmware is a monolithic piece of software that contains the whole software stack, whereas a variety of peripherals represent the hardware. As MCU firmware contains vulnerabilities, it is ideal to test firmware with off-the-shelf software testing techniques, such as dynamic symbolic execution and fuzzing. Nevertheless, no emulator can emulate the diverse MCU peripherals or execute/test the firmware. Specifically, the interrupt interface, among all I/O interfaces used by MCU peripherals, is extremely challenging to emulate. In this paper, we present AIM -- a generic, scalable, and hardware-independent dynamic firmware analysis framework that supports unemulated MCU peripherals by a novel interrupt modeling mechanism. AIM effectively and efficiently covers interrupt-dependent code in firmware by a novel, firmware-guided, Just-in-Time Interrupt Firing technique. We implemented our framework in angr and performed dynamic symbolic execution for eight real-world MCU firmware. According to testing results, our framework covered up to 11.2 times more interrupt-dependent code than state-of-the-art approaches while accomplishing several challenging goals not feasible previously. Finally, a comparison with a state-of-the-art firmware fuzzer demonstrates dynamic symbolic execution and fuzzing together can achieve better firmware testing coverage.
Detecting malicious URLs is a crucial aspect of web search and mining, significantly impacting internet security. Though advancements in machine learning have improved the effectiveness of detection methods, these methods still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, an approach that combines the strengths of pretrained Transformers and pyramid feature learning for improving malicious URL detection. We implement PyraTrans by leveraging a pretrained CharBERT as the base and augmenting it with 3 connected feature modules: 1) The Encoder Feature Extraction module, which extracts representations from each encoder layer of CharBERT to obtain multi-order features; 2) The Multi-Scale Feature Learning Module, which captures multi-scale local contextual insights and aggregate information across different layer-levels; and 3) The Pyramid Spatial Attention Module, which learns hierarchical and spatial feature attentions, highlighting critical classification signals while reducing noise. The proposed approach addresses the limitations of the Transformer in local feature learning and spatial awareness, and enabling us to extract multi-order, multi-scale URL feature representations with enhanced attentional focus. PyraTrans is evaluated using 4 benchmark datasets, where it demonstrated significant advancements over prior baseline methods. Particularly, on the imbalanced dataset, our method, with just 10% of the data for training, the TPR is 3.3-6.5 times and the F1-score is 2.9-4.5 times that of the baseline. Our approach also demonstrates robustness against adversarial attacks. Codes and data are available at //github.com/Alixyvtte/PyraTrans.
Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.