Data-driven approaches coupled with physical knowledge are powerful techniques to model systems. The goal of such models is to efficiently solve for the underlying field by combining measurements with known physical laws. As many systems contain unknown elements, such as missing parameters, noisy data, or incomplete physical laws, this is widely approached as an uncertainty quantification problem. The common techniques to handle all the variables typically depend on the numerical scheme used to approximate the posterior, and it is desirable to have a method which is independent of any such discretization. Information field theory (IFT) provides the tools necessary to perform statistics over fields that are not necessarily Gaussian. We extend IFT to physics-informed IFT (PIFT) by encoding the functional priors with information about the physical laws which describe the field. The posteriors derived from this PIFT remain independent of any numerical scheme and can capture multiple modes, allowing for the solution of problems which are ill-posed. We demonstrate our approach through an analytical example involving the Klein-Gordon equation. We then develop a variant of stochastic gradient Langevin dynamics to draw samples from the joint posterior over the field and model parameters. We apply our method to numerical examples with various degrees of model-form error and to inverse problems involving nonlinear differential equations. As an addendum, the method is equipped with a metric which allows the posterior to automatically quantify model-form uncertainty. Because of this, our numerical experiments show that the method remains robust to even an incorrect representation of the physics given sufficient data. We numerically demonstrate that the method correctly identifies when the physics cannot be trusted, in which case it automatically treats learning the field as a regression problem.
A current assumption of most clustering methods is that the training data and future data are taken from the same distribution. However, this assumption may not hold in most real-world scenarios. In this paper, we propose an information theoretical importance sampling based approach for clustering problems (ITISC) which minimizes the worst case of expected distortions under the constraint of distribution deviation. The distribution deviation constraint can be converted to the constraint over a set of weight distributions centered on the uniform distribution derived from importance sampling. The objective of the proposed approach is to minimize the loss under maximum degradation hence the resulting problem is a constrained minimax optimization problem which can be reformulated to an unconstrained problem using the Lagrange method. The optimization problem can be solved by both an alternative optimization algorithm or a general optimization routine by commercially available software. Experiment results on synthetic datasets and a real-world load forecasting problem validate the effectiveness of the proposed model. Furthermore, we show that fuzzy c-means is a special case of ITISC with the logarithmic distortion, and this observation provides an interesting physical interpretation for fuzzy exponent $m$.
The limitations of turbulence closure models in the context of Reynolds-averaged NavierStokes (RANS) simulations play a significant part in contributing to the uncertainty of Computational Fluid Dynamics (CFD). Perturbing the spectral representation of the Reynolds stress tensor within physical limits is common practice in several commercial and open-source CFD solvers, in order to obtain estimates for the epistemic uncertainties of RANS turbulence models. Recent research revealed, that there is a need for moderating the amount of perturbed Reynolds stress tensor tensor to be considered due to upcoming stability issues of the solver. In this paper we point out that the consequent common implementation can lead to unintended states of the resulting perturbed Reynolds stress tensor. The combination of eigenvector perturbation and moderation factor may actually result in moderated eigenvalues, which are not linearly dependent on the originally unperturbed and fully perturbed eigenvalues anymore. Hence, the computational implementation is no longer in accordance with the conceptual idea of the Eigenspace Perturbation Framework. We verify the implementation of the conceptual description with respect to its self-consistency. Adequately representing the basic concept results in formulating a computational implementation to improve self-consistency of the Reynolds stress tensor perturbation
This paper introduces a novel generator called Perturbation-Assisted Sample Synthesis (PASS), designed for drawing reliable conclusions from complex data, especially when using advanced modeling techniques like deep neural networks. PASS utilizes perturbation to generate synthetic data that closely mirrors the distribution of raw data, encompassing numerical and unstructured data types such as gene expression, images, and text. By estimating the data-generating distribution and leveraging large pre-trained generative models, PASS enhances estimation accuracy, providing an estimated distribution of any statistic through Monte Carlo experiments. Building on PASS, we propose a generative inference framework called Perturbation-Assisted Inference (PAI), which offers a statistical guarantee of validity. In pivotal inference, PAI enables accurate conclusions without knowing a pivotal's distribution as in simulations, even with limited data. In non-pivotal situations, we train PASS using an independent holdout sample, resulting in credible conclusions. To showcase PAI's capability in tackling complex problems, we highlight its applications in three domains: image synthesis inference, sentiment word inference, and multimodal inference via stable diffusion.
We propose a novel framework for uncertainty quantification via information bottleneck (IB-UQ) for scientific machine learning tasks, including deep neural network (DNN) regression and neural operator learning (DeepONet). Specifically, we incorporate the bottleneck by a confidence-aware encoder, which encodes inputs into latent representations according to the confidence of the input data belonging to the region where training data is located, and utilize a Gaussian decoder to predict means and variances of outputs conditional on representation variables. Furthermore, we propose a data augmentation based information bottleneck objective which can enhance the quantification quality of the extrapolation uncertainty, and the encoder and decoder can be both trained by minimizing a tractable variational bound of the objective. In comparison to uncertainty quantification (UQ) methods for scientific learning tasks that rely on Bayesian neural networks with Hamiltonian Monte Carlo posterior estimators, the model we propose is computationally efficient, particularly when dealing with large-scale data sets. The effectiveness of the IB-UQ model has been demonstrated through several representative examples, such as regression for discontinuous functions, real-world data set regression, learning nonlinear operators for partial differential equations, and a large-scale climate model. The experimental results indicate that the IB-UQ model can handle noisy data, generate robust predictions, and provide confident uncertainty evaluation for out-of-distribution data.
In recent years, learning-based control in robotics has gained significant attention due to its capability to address complex tasks in real-world environments. With the advances in machine learning algorithms and computational capabilities, this approach is becoming increasingly important for solving challenging control problems in robotics by learning unknown or partially known robot dynamics. Active exploration, in which a robot directs itself to states that yield the highest information gain, is essential for efficient data collection and minimizing human supervision. Similarly, uncertainty-aware deployment has been a growing concern in robotic control, as uncertain actions informed by the learned model can lead to unstable motions or failure. However, active exploration and uncertainty-aware deployment have been studied independently, and there is limited literature that seamlessly integrates them. This paper presents a unified model-based reinforcement learning framework that bridges these two tasks in the robotics control domain. Our framework uses a probabilistic ensemble neural network for dynamics learning, allowing the quantification of epistemic uncertainty via Jensen-Renyi Divergence. The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC, resulting in efficient collection of training data and successful avoidance of uncertain state-action spaces. We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
Purpose of Review: To effectively synthesise and analyse multi-robot behaviour, we require formal task-level models which accurately capture multi-robot execution. In this paper, we review modelling formalisms for multi-robot systems under uncertainty, and discuss how they can be used for planning, reinforcement learning, model checking, and simulation. Recent Findings: Recent work has investigated models which more accurately capture multi-robot execution by considering different forms of uncertainty, such as temporal uncertainty and partial observability, and modelling the effects of robot interactions on action execution. Other strands of work have presented approaches for reducing the size of multi-robot models to admit more efficient solution methods. This can be achieved by decoupling the robots under independence assumptions, or reasoning over higher level macro actions. Summary: Existing multi-robot models demonstrate a trade off between accurately capturing robot dependencies and uncertainty, and being small enough to tractably solve real world problems. Therefore, future research should exploit realistic assumptions over multi-robot behaviour to develop smaller models which retain accurate representations of uncertainty and robot interactions; and exploit the structure of multi-robot problems, such as factored state spaces, to develop scalable solution methods.
Inverse problems, particularly those governed by Partial Differential Equations (PDEs), are prevalent in various scientific and engineering applications, and uncertainty quantification (UQ) of solutions to these problems is essential for informed decision-making. This second part of a two-paper series builds upon the foundation set by the first part, which introduced CUQIpy, a Python software package for computational UQ in inverse problems using a Bayesian framework. In this paper, we extend CUQIpy's capabilities to solve PDE-based Bayesian inverse problems through a general framework that allows the integration of PDEs in CUQIpy, whether expressed natively or using third-party libraries such as FEniCS. CUQIpy offers concise syntax that closely matches mathematical expressions, streamlining the modeling process and enhancing the user experience. The versatility and applicability of CUQIpy to PDE-based Bayesian inverse problems are demonstrated on examples covering parabolic, elliptic and hyperbolic PDEs. This includes problems involving the heat and Poisson equations and application case studies in electrical impedance tomography (EIT) and photo-acoustic tomography (PAT), showcasing the software's efficiency, consistency, and intuitive interface. This comprehensive approach to UQ in PDE-based inverse problems provides accessibility for non-experts and advanced features for experts.
This paper introduces CUQIpy, a versatile open-source Python package for computational uncertainty quantification (UQ) in inverse problems, presented as Part I of a two-part series. CUQIpy employs a Bayesian framework, integrating prior knowledge with observed data to produce posterior probability distributions that characterize the uncertainty in computed solutions to inverse problems. The package offers a high-level modeling framework with concise syntax, allowing users to easily specify their inverse problems, prior information, and statistical assumptions. CUQIpy supports a range of efficient sampling strategies and is designed to handle large-scale problems. Notably, the automatic sampler selection feature analyzes the problem structure and chooses a suitable sampler without user intervention, streamlining the process. With a selection of probability distributions, test problems, computational methods, and visualization tools, CUQIpy serves as a powerful, flexible, and adaptable tool for UQ in a wide selection of inverse problems. Part II of the series focuses on the use of CUQIpy for UQ in inverse problems with partial differential equations (PDEs).
In nuclear Thermal Hydraulics (TH) system codes, a significant source of input uncertainty comes from the Physical Model Parameters (PMPs), and accurate uncertainty quantification in these input parameters is crucial for validating nuclear reactor systems within the Best Estimate Plus Uncertainty (BEPU) framework. Inverse Uncertainty Quantification (IUQ) method has been used to quantify the uncertainty of PMPs from a Bayesian perspective. This paper introduces a novel hierarchical Bayesian model for IUQ which aims to mitigate two existing challenges: the high variability of PMPs under varying experimental conditions, and unknown model discrepancies or outliers causing over-fitting issues for the PMPs. The proposed hierarchical model is compared with the conventional single-level Bayesian model based on the PMPs in TRACE using the measured void fraction data in the Boiling Water Reactor Full-size Fine-mesh Bundle Test (BFBT) benchmark. A Hamiltonian Monte Carlo Method - No U-Turn Sampler (NUTS) is used for posterior sampling in the hierarchical structure. The results demonstrate the effectiveness of the proposed hierarchical structure in providing better estimates of the posterior distributions of PMPs and being less prone to over-fitting. The proposed hierarchical model also demonstrates a promising approach for generalizing IUQ to larger databases with a broad range of experimental conditions and different geometric setups.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.