亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present a novel class of high-order energy-preserving schemes for solving the Zakharov-Rubenchik equations. The main idea of the scheme is first to introduce an quadratic auxiliary variable to transform the Hamiltonian energy into a modified quadratic energy and the original system is then reformulated into an equivalent system which satisfies the mass, modified energy as well as two linear invariants. The symplectic Runge-Kutta method in time, together with the Fourier pseudo-spectral method in space is employed to compute the solution of the reformulated system. The main benefit of the proposed schemes is that it can achieve arbitrarily high-order accurate in time and conserve the three invariants: mass, Hamiltonian energy and two linear invariants. In addition, an efficient fixed-point iteration is proposed to solve the resulting nonlinear equations of the proposed schemes. Several experiments are addressed to validate the theoretical results.

相關內容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移動Ad hoc和傳感器系統IEEE國際會議。 Publisher:IEEE。 SIT:

We propose a matrix-free solver for the numerical solution of the cardiac electrophysiology model consisting of the monodomain nonlinear reaction-diffusion equation coupled with a system of ordinary differential equations for the ionic species. Our numerical approximation is based on the high-order Spectral Element Method (SEM) to achieve accurate numerical discretization while employing a much smaller number of Degrees of Freedom than first-order Finite Elements. We combine vectorization with sum-factorization, thus allowing for a very efficient use of high-order polynomials in a high performance computing framework. We validate the effectiveness of our matrix-free solver in a variety of applications and perform different electrophysiological simulations ranging from a simple slab of cardiac tissue to a realistic four-chamber heart geometry. We compare SEM to SEM with Numerical Integration (SEM-NI), showing that they provide comparable results in terms of accuracy and efficiency. In both cases, increasing the local polynomial degree $p$ leads to better numerical results and smaller computational times than reducing the mesh size $h$. We also implement a matrix-free Geometric Multigrid preconditioner that results in a comparable number of linear solver iterations with respect to a state-of-the-art matrix-based Algebraic Multigrid preconditioner. As a matter of fact, the matrix-free solver proposed here yields up to 45$\times$ speed-up with respect to a conventional matrix-based solver.

Latent variable discovery is a central problem in data analysis with a broad range of applications in applied science. In this work, we consider data given as an invertible mixture of two statistically independent components, and assume that one of the components is observed while the other is hidden. Our goal is to recover the hidden component. For this purpose, we propose an autoencoder equipped with a discriminator. Unlike the standard nonlinear ICA problem, which was shown to be non-identifiable, in the special case of ICA we consider here, we show that our approach can recover the component of interest up to entropy-preserving transformation. We demonstrate the performance of the proposed approach on several datasets, including image synthesis, voice cloning, and fetal ECG extraction.

We present substantially generalized and improved quantum algorithms over prior work for inhomogeneous linear and nonlinear ordinary differential equations (ODE). Specifically, we show how the norm of the matrix exponential characterizes the run time of quantum algorithms for linear ODEs opening the door to an application to a wider class of linear and nonlinear ODEs. In Berry et al., (2017), a quantum algorithm for a certain class of linear ODEs is given, where the matrix involved needs to be diagonalizable. The quantum algorithm for linear ODEs presented here extends to many classes of non-diagonalizable matrices. The algorithm here is also exponentially faster than the bounds derived in Berry et al., (2017) for certain classes of diagonalizable matrices. Our linear ODE algorithm is then applied to nonlinear differential equations using Carleman linearization (an approach taken recently by us in Liu et al., (2021)). The improvement over that result is two-fold. First, we obtain an exponentially better dependence on error. This kind of logarithmic dependence on error has also been achieved by Xue et al., (2021), but only for homogeneous nonlinear equations. Second, the present algorithm can handle any sparse, invertible matrix (that models dissipation) if it has a negative log-norm (including non-diagonalizable matrices), whereas Liu et al., (2021) and Xue et al., (2021) additionally require normality.

Grover's search algorithm is renowned for its dramatic speedup in solving many important scientific problems. The recently proposed Variational Quantum Search (VQS) algorithm has shown an exponential advantage over Grover's algorithm for up to 26 qubits. However, its advantage for larger numbers of qubits has not yet been proven. Here we show that the exponentially deep circuit required by Grover's algorithm can be replaced by a multi-controlled NOT gate together with either a single layer of Ry gates or two layers of circuits consisting of Hadamard and NOT gates, which is valid for any number of qubits greater than five. We prove that the VQS, with a single layer of Ry gates as its Ansatz, has near-perfect reachability in finding the good element of an arbitrarily large unstructured data set, and its reachability exponentially improves with the number of qubits, where the reachability is defined to quantify the ability of a given Ansatz to generate an optimal quantum state. Numerical studies further validate the excellent reachability of the VQS. Proving the near-perfect reachability of the VQS, with a depth-1 Ansatz, for any number of qubits completes an essential step in proving its exponential advantage over Grover's algorithm for any number of qubits, and the latter proving is significant as it means that the VQS can efficiently solve NP-complete problems.

Near-term quantum computers provide a promising platform for finding ground states of quantum systems, which is an essential task in physics, chemistry, and materials science. Near-term approaches, however, are constrained by the effects of noise as well as the limited resources of near-term quantum hardware. We introduce "neural error mitigation," which uses neural networks to improve estimates of ground states and ground-state observables obtained using near-term quantum simulations. To demonstrate our method's broad applicability, we employ neural error mitigation to find the ground states of the H$_2$ and LiH molecular Hamiltonians, as well as the lattice Schwinger model, prepared via the variational quantum eigensolver (VQE). Our results show that neural error mitigation improves numerical and experimental VQE computations to yield low energy errors, high fidelities, and accurate estimations of more-complex observables like order parameters and entanglement entropy, without requiring additional quantum resources. Furthermore, neural error mitigation is agnostic with respect to the quantum state preparation algorithm used, the quantum hardware it is implemented on, and the particular noise channel affecting the experiment, contributing to its versatility as a tool for quantum simulation.

We present a discretisation of the 3+1 formulation of the Yang-Mills equations in the temporal gauge, using a Lie algebra-valued extension of the discrete de Rham (DDR) sequence, that preserves the non-linear constraint exactly. In contrast to Maxwell's equations, where the preservation of the analogous constraint only depends on reproducing some complex properties of the continuous de Rham sequence, the preservation of the non-linear constraint relies for the Yang-Mills equations on a constrained formulation, previously proposed in [10]. The fully discrete nature of the DDR method requires to devise appropriate constructions of the non-linear terms, adapted to the discrete spaces and to the need for replicating the crucial Ad-invariance property of the $L^2$-product. We then prove some energy estimates, and provide results of 3D numerical simulations based on this scheme.

In this paper, we are concerned with arbitrarily high-order momentum-preserving and energy-preserving schemes for solving the generalized Rosenau-type equation, respectively. The derivation of the momentum-preserving schemes is made within the symplectic Runge-Kutta method, coupled with the standard Fourier pseudo-spectral method in space. Then, combined with the quadratic auxiliary variable approach and the symplectic Runge-Kutta method, together with the standard Fourier pseudo-spectral method, we present a class of high-order mass- and energy-preserving schemes for the Rosenau equation. Finally, extensive numerical tests and comparisons are also addressed to illustrate the performance of the proposed schemes.

Personalization of machine learning (ML) predictions for individual users/domains/enterprises is critical for practical recommendation style systems. Standard personalization approaches involve learning a user/domain specific embedding that is fed into a fixed global model which can be limiting. On the other hand, personalizing/fine-tuning model itself for each user/domain -- a.k.a meta-learning -- has high storage/infrastructure cost. We propose a novel meta-learning style approach that models network weights as a sum of low-rank and sparse matrices. This captures common information from multiple individuals/users together in the low-rank part while sparse part captures user-specific idiosyncrasies. Furthermore, the framework is up to two orders of magnitude more scalable (in terms of storage/infrastructure cost) than user-specific finetuning of model. We then study the framework in the linear setting, where the problem reduces to that of estimating the sum of a rank-$r$ and a $k$-column sparse matrix using a small number of linear measurements. We propose an alternating minimization method with iterative hard thresholding -- AMHT-LRS -- to learn the low-rank and sparse part. For the realizable, Gaussian data setting, we show that AMHT-LRS solves the problem efficiently with nearly optimal samples. A significant challenge in personalization is ensuring privacy of each user's sensitive data. We alleviate this problem by proposing a differentially private variant of our method that also is equipped with strong generalization guarantees. Finally, on multiple standard recommendation datasets, we demonstrate that our approach allows personalized models to obtain superior performance in sparse data regime.

We propose and analyse a hybrid high-order (HHO) scheme for stationary incompressible magnetohydrodynamics equations. The scheme has an arbitrary order of accuracy and is applicable on generic polyhedral meshes. For sources that are small enough, we prove error estimates in energy norm for the velocity and magnetic field, and $L^2$-norm for the pressure; these estimates are fully robust with respect to small faces, and of optimal order with respect to the mesh size. Using compactness techniques, we also prove that the scheme converges to a solution of the continuous problem, irrespective of the source being small or large. Finally, we illustrate our theoretical results through 3D numerical tests on tetrahedral and Voronoi mesh families.

This paper investigates an induction heating problem in a multi-component system containing a moving non-magnetic conductor. The electromagnetic process is described by the eddy current model, and the heat transfer process is governed by the convection-diffusion equation. Both processes are coupled by a restrained Joule heat source. A temporal discretization scheme is introduced to solve the corresponding variational system numerically. With the aid of the Reynolds transport theorem, we prove the convergence of the proposed scheme as well as the well-posedness of the variational problem. Some numerical experiments are also performed to assess the performance of the numerical scheme.

北京阿比特科技有限公司