亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a discretisation of the 3+1 formulation of the Yang-Mills equations in the temporal gauge, using a Lie algebra-valued extension of the discrete de Rham (DDR) sequence, that preserves the non-linear constraint exactly. In contrast to Maxwell's equations, where the preservation of the analogous constraint only depends on reproducing some complex properties of the continuous de Rham sequence, the preservation of the non-linear constraint relies for the Yang-Mills equations on a constrained formulation, previously proposed in [10]. The fully discrete nature of the DDR method requires to devise appropriate constructions of the non-linear terms, adapted to the discrete spaces and to the need for replicating the crucial Ad-invariance property of the $L^2$-product. We then prove some energy estimates, and provide results of 3D numerical simulations based on this scheme.

相關內容

The concepts of sparsity, and regularised estimation, have proven useful in many high-dimensional statistical applications. Dynamic factor models (DFMs) provide a parsimonious approach to modelling high-dimensional time series, however, it is often hard to interpret the meaning of the latent factors. This paper formally introduces a class of sparse DFMs whereby the loading matrices are constrained to have few non-zero entries, thus increasing interpretability of factors. We present a regularised M-estimator for the model parameters, and construct an efficient expectation maximisation algorithm to enable estimation. Synthetic experiments demonstrate consistency in terms of estimating the loading structure, and superior predictive performance where a low-rank factor structure may be appropriate. The utility of the method is further illustrated in an application forecasting electricity consumption across a large set of smart meters.

A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, are approximated in a semi-implicit manner. In the spatial discretization, the marker and cell (MAC) difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error (RRE) estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis.

The resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one of the major issue is to compute a divergence free velocity. The non-conforming Crouzeix-Raviart finite element are convenient since they induce local mass conservation. Moreover they are such that the stability constant of the Fortin operator is equal to 1. This implies that they can easily handle anisotropic mesh [1, 2]. However spurious velocities may appear and damage the approximation. We propose a scheme here that allows to reduce the spurious velocities. It is based on a new discretisation for the gradient of pressure based on the symmetric MPFA scheme (finite volume MultiPoint Flux Approximation) [3, 4, 5].

In this paper, we consider numerical approximations for solving the inductionless magnetohydrodynamic (MHD) equations. By utilizing the scalar auxiliary variable (SAV) approach for dealing with the convective and coupling terms, we propose some first- and second-order schemes for this system. These schemes are linear, decoupled, unconditionally energy stable, and only require solving a sequence of differential equations with constant coefficients at each time step. We further derive a rigorous error analysis for the first-order scheme, establishing optimal convergence rates for the velocity, pressure, current density and electric potential in the two-dimensional case. Numerical examples are presented to verify the theoretical findings and show the performances of the schemes.

Switch-like responses arising from bistability have been linked to cell signaling processes and memory. Revealing the shape and properties of the set of parameters that lead to bistability is necessary to understand the underlying biological mechanisms, but is a complex mathematical problem. We present an efficient approach to determine a basic topological property of the parameter region of multistationary, namely whether it is connected or not. The connectivity of this region can be interpreted in terms of the biological mechanisms underlying bistability and the switch-like patterns that the system can create. We provide an algorithm to assert that the parameter region of multistationarity is connected, targeting reaction networks with mass-action kinetics. We show that this is the case for numerous relevant cell signaling motifs, previously described to exhibit bistability. However, we show that for a motif displaying a phosphorylation cycle with allosteric enzyme regulation, the region of multistationarity has two distinct connected components, corresponding to two different, but symmetric, biological mechanisms. The method relies on linear programming and bypasses the expensive computational cost of direct and generic approaches to study parametric polynomial systems. This characteristic makes it suitable for mass-screening of reaction networks.

This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval.

Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates are a priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the $H^s$ norm during the training.

The dynamics of the power system are described by a system of differential-algebraic equations. Time-domain simulations are used to understand the evolution of the system dynamics. These simulations can be computationally expensive due to the stiffness of the system which requires the use of finely discretized time-steps. By increasing the allowable time-step size, we aim to accelerate such simulations. In this paper, we use the observation that even though the individual components are described using both algebraic and differential equations, their coupling only involves algebraic equations. Following this observation, we use Neural Networks (NNs) to approximate the components' state evolution, leading to fast, accurate, and numerically stable approximators, which enable larger time-steps. To account for effects of the network on the components and vice-versa, the NNs take the temporal evolution of the coupling algebraic variables as an input for their prediction. We initially estimate this temporal evolution and then update it in an iterative fashion using the Newton-Raphson algorithm. The involved Jacobian matrix is calculated with Automatic Differentiation and its size depends only on the network size but not on the component dynamics. We demonstrate this NN-based simulator on the IEEE 9-bus test case with 3 generators.

We consider identification and inference about a counterfactual outcome mean when there is unmeasured confounding using tools from proximal causal inference (Miao et al. [2018], Tchetgen Tchetgen et al. [2020]). Proximal causal inference requires existence of solutions to at least one of two integral equations. We motivate the existence of solutions to the integral equations from proximal causal inference by demonstrating that, assuming the existence of a solution to one of the integral equations, $\sqrt{n}$-estimability of a linear functional (such as its mean) of that solution requires the existence of a solution to the other integral equation. Solutions to the integral equations may not be unique, which complicates estimation and inference. We construct a consistent estimator for the solution set for one of the integral equations and then adapt the theory of extremum estimators to find from the estimated set a consistent estimator for a uniquely defined solution. A debiased estimator for the counterfactual mean is shown to be root-$n$ consistent, regular, and asymptotically semiparametrically locally efficient under additional regularity conditions.

Recent approaches to causal inference have focused on the identification and estimation of \textit{causal effects}, defined as (properties of) the distribution of counterfactual outcomes under hypothetical actions that alter the nodes of a graphical model. In this article we explore an alternative approach using the concept of \textit{causal influence}, defined through operations that alter the information propagated through the edges of a directed acyclic graph. Causal influence may be more useful than causal effects in settings in which interventions on the causal agents are infeasible or of no substantive interest, for example when considering gender, race, or genetics as a causal agent. Furthermore, the "information transfer" interventions proposed allow us to solve a long-standing problem in causal mediation analysis, namely the non-parametric identification of path-specific effects in the presence of treatment-induced mediator-outcome confounding. We propose efficient non-parametric estimators for a covariance version of the proposed causal influence measures, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining $\sqrt{n}$-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data.

北京阿比特科技有限公司