亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a method for assessing differential item functioning (DIF) in item response theory (IRT) models. The method does not require pre-specification of anchor items, which is its main virtue. It is developed in two main steps, first by showing how DIF can be re-formulated as a problem of outlier detection in IRT-based scaling, then tackling the latter using established methods from robust statistics. The proposal is a redescending M-estimator of IRT scaling parameters that is tuned to flag items with DIF at the desired asymptotic Type I Error rate. One way of quantifying the robustness of the estimator is in terms of its finite sample breakdown point, which is shown to equal to 1/2 (i.e., the estimator remains bounded whenever fewer than 1/2 of the items on an assessment exhibit DIF). This theoretical result is complemented by simulation studies that illustrate the performance of the estimator and its associated test of DIF. The simulation studies show that the proposed method compares favorably to currently available approaches, and a real data example illustrates its application in a research context where pre-specification of anchor items is infeasible. The focus of the paper is the two-parameter logistic model in two independent groups, with extensions to other settings considered in the conclusion.

相關內容

Additive regression models with interactions are widely studied in the literature, using methods such as splines or Gaussian process regression. However, these methods can pose challenges for estimation and model selection, due to the presence of many smoothing parameters and the lack of suitable criteria. We propose to address these challenges by extending the I-prior methodology (Bergsma, 2020) to multiple covariates, which may be multidimensional. The I-prior methodology has some advantages over other methods, such as Gaussian process regression and Tikhonov regularization, both theoretically and practically. In particular, the I-prior is a proper prior, is based on minimal assumptions, yields an admissible posterior mean, and estimation of the scale (or smoothing) parameters can be done using an EM algorithm with simple E and M steps. Moreover, we introduce a parsimonious specification of models with interactions, which has two benefits: (i) it reduces the number of scale parameters and thus facilitates the estimation of models with interactions, and (ii) it enables straightforward model selection (among models with different interactions) based on the marginal likelihood.

$l^q$-regularization has been demonstrated to be an attractive technique in machine learning and statistical modeling. It attempts to improve the generalization (prediction) capability of a machine (model) through appropriately shrinking its coefficients. The shape of a $l^q$ estimator differs in varying choices of the regularization order $q$. In particular, $l^1$ leads to the LASSO estimate, while $l^{2}$ corresponds to the smooth ridge regression. This makes the order $q$ a potential tuning parameter in applications. To facilitate the use of $l^{q}$-regularization, we intend to seek for a modeling strategy where an elaborative selection on $q$ is avoidable. In this spirit, we place our investigation within a general framework of $l^{q}$-regularized kernel learning under a sample dependent hypothesis space (SDHS). For a designated class of kernel functions, we show that all $l^{q}$ estimators for $0< q < \infty$ attain similar generalization error bounds. These estimated bounds are almost optimal in the sense that up to a logarithmic factor, the upper and lower bounds are asymptotically identical. This finding tentatively reveals that, in some modeling contexts, the choice of $q$ might not have a strong impact in terms of the generalization capability. From this perspective, $q$ can be arbitrarily specified, or specified merely by other no generalization criteria like smoothness, computational complexity, sparsity, etc..

Multivariate adaptive regression splines (MARS) is a popular method for nonparametric regression introduced by Friedman in 1991. MARS fits simple nonlinear and non-additive functions to regression data. We propose and study a natural lasso variant of the MARS method. Our method is based on least squares estimation over a convex class of functions obtained by considering infinite-dimensional linear combinations of functions in the MARS basis and imposing a variation based complexity constraint. Our estimator can be computed via finite-dimensional convex optimization, although it is defined as a solution to an infinite-dimensional optimization problem. Under a few standard design assumptions, we prove that our estimator achieves a rate of convergence that depends only logarithmically on dimension and thus avoids the usual curse of dimensionality to some extent. We also show that our method is naturally connected to nonparametric estimation techniques based on smoothness constraints. We implement our method with a cross-validation scheme for the selection of the involved tuning parameter and compare it to the usual MARS method in various simulation and real data settings.

This paper introduces a numerical approach to solve singularly perturbed convection diffusion boundary value problems for second-order ordinary differential equations that feature a small positive parameter {\epsilon} multiplying the highest derivative. We specifically examine Dirichlet boundary conditions. To solve this differential equation, we propose an upwind finite difference method and incorporate the Shishkin mesh scheme to capture the solution near boundary layers. Our solver is both direct and of high accuracy, with computation time that scales linearly with the number of grid points. MATLAB code of the numerical recipe is made publicly available. We present numerical results to validate the theoretical results and assess the accuracy of our method. The tables and graphs included in this paper demonstrate the numerical outcomes, which indicate that our proposed method offers a highly accurate approximation of the exact solution.

Recent advancements in testing differential item functioning (DIF) have greatly relaxed restrictions made by the conventional multiple group item response theory (IRT) model with respect to the number of grouping variables and the assumption of predefined DIF-free anchor items. The application of the $L_1$ penalty in DIF detection has shown promising results in identifying a DIF item without a priori knowledge on anchor items while allowing the simultaneous investigation of multiple grouping variables. The least absolute shrinkage and selection operator (LASSO) is added directly to the loss function to encourage variable sparsity such that DIF parameters of anchor items are penalized to be zero. Therefore, no predefined anchor items are needed. However, DIF detection using LASSO requires a non-trivial model selection consistency assumption and is difficult to draw statistical inference. Given the importance of identifying DIF items in test development, this study aims to apply the decorrelated score test to test DIF once the penalized method is used. Unlike the existing regularized DIF method which is unable to test the statistical significance of a DIF item selected by LASSO, the decorrelated score test requires weaker assumptions and is able to provide asymptotically valid inference to test DIF. Additionally, the deccorrelated score function can be used to construct asymptotically unbiased normal and efficient DIF parameter estimates via a one-step correction. The performance of the proposed decorrelated score test and the one-step estimator are evaluated via a Monte Carlo simulation study.

This paper presents a personalized graph federated learning (PGFL) framework in which distributedly connected servers and their respective edge devices collaboratively learn device or cluster-specific models while maintaining the privacy of every individual device. The proposed approach exploits similarities among different models to provide a more relevant experience for each device, even in situations with diverse data distributions and disproportionate datasets. Furthermore, to ensure a secure and efficient approach to collaborative personalized learning, we study a variant of the PGFL implementation that utilizes differential privacy, specifically zero-concentrated differential privacy, where a noise sequence perturbs model exchanges. Our mathematical analysis shows that the proposed privacy-preserving PGFL algorithm converges to the optimal cluster-specific solution for each cluster in linear time. It also shows that exploiting similarities among clusters leads to an alternative output whose distance to the original solution is bounded, and that this bound can be adjusted by modifying the algorithm's hyperparameters. Further, our analysis shows that the algorithm ensures local differential privacy for all clients in terms of zero-concentrated differential privacy. Finally, the performance of the proposed PGFL algorithm is examined by performing numerical experiments in the context of regression and classification using synthetic data and the MNIST dataset.

Heterogeneity has been a hot topic in recent educational literature. Several calls have been voiced to adopt methods that capture different patterns or subgroups within students behavior or functioning. Assuming that there is an average pattern that represents the entirety of student populations requires the measured construct to have the same causal mechanism, same development pattern, and affect students in exactly the same way. Using a person-centered method (Finite Gaussian mixture model or latent profile analysis), the present tutorial shows how to uncover the heterogeneity within engagement data by identifying three latent or unobserved clusters. This chapter offers an introduction to the model-based clustering that includes the principles of the methods, a guide to choice of number of clusters, evaluation of clustering results and a detailed guide with code and a real-life dataset. The discussion elaborates on the interpretation of the results, the advantages of model-based clustering as well as how it compares with other methods.

Learning in MDPs with highly complex state representations is currently possible due to multiple advancements in reinforcement learning algorithm design. However, this incline in complexity, and furthermore the increase in the dimensions of the observation came at the cost of volatility that can be taken advantage of via adversarial attacks (i.e. moving along worst-case directions in the observation space). To solve this policy instability problem we propose a novel method to detect the presence of these non-robust directions via local quadratic approximation of the deep neural policy loss. Our method provides a theoretical basis for the fundamental cut-off between safe observations and adversarial observations. Furthermore, our technique is computationally efficient, and does not depend on the methods used to produce the worst-case directions. We conduct extensive experiments in the Arcade Learning Environment with several different adversarial attack techniques. Most significantly, we demonstrate the effectiveness of our approach even in the setting where non-robust directions are explicitly optimized to circumvent our proposed method.

In this paper, we present a notion of differential privacy (DP) for data that comes from different classes. Here, the class-membership is private information that needs to be protected. The proposed method is an output perturbation mechanism that adds noise to the release of query response such that the analyst is unable to infer the underlying class-label. The proposed DP method is capable of not only protecting the privacy of class-based data but also meets quality metrics of accuracy and is computationally efficient and practical. We illustrate the efficacy of the proposed method empirically while outperforming the baseline additive Gaussian noise mechanism. We also examine a real-world application and apply the proposed DP method to the autoregression and moving average (ARMA) forecasting method, protecting the privacy of the underlying data source. Case studies on the real-world advanced metering infrastructure (AMI) measurements of household power consumption validate the excellent performance of the proposed DP method while also satisfying the accuracy of forecasted power consumption measurements.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司