亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper tackles the problem of single-user multiple-input multiple-output communication with 1-bit digital-to-analog and analog-to-digital converters. With the information-theoretic capacity as benchmark, the complementary strategies of beamforming and equiprobable signaling are contrasted in the regimes of operational interest, and the ensuing spectral efficiencies are characterized. Various canonical channel types are considered, with emphasis on line-of-sight settings under both spherical and planar wavefronts, respectively representative of short and long transmission ranges at mmWave and terahertz frequencies. In all cases, a judicious combination of beamforming and equiprobable signaling is shown to operate within a modest gap from capacity.

相關內容

The existing relay-assisted terahertz (THz) wireless system is limited to dual-hop transmission with pointing errors and short-term fading without considering the shadowing effect. This paper analyzes the performance of a multihop-assisted backhaul communication mixed with an access link under the shadowed fading with antenna misalignment errors. We derive statistical results of the signal-to-noise ratio (SNR) of the multihop link by considering independent but not identically distributed (i.ni.d) $\alpha$-$\mu$ fading channel with pointing errors employing channel-assisted (CA) and fixed-gain (FG) amplify-and-forward (AF) relaying for each hop. We analyze the outage probability, average BER, and ergodic capacity performance of the mixed system considering the generalized-$K$ shadowed fading model with AF and decode-and-forward (DF) protocols employed for the access link. We derive exact expressions of the performance metrics for the CA-multihop system with the DF relaying for the last hop and upper bound of the performance for the FG-multihop system using FG and DF relaying at the last relay. We also develop asymptotic analysis in the high SNR to derive the diversity order of the system and use computer simulations to provide design and deployment aspects of multiple relays in the backhaul link to extend the communication range for THz wireless transmissions.

We present an analytical framework for the channel estimation and the data detection in massive multiple-input multiple-output uplink systems with 1-bit analog-to-digital converters (ADCs) and i.i.d. Rayleigh fading. First, we provide closed-form expressions of the mean squared error (MSE) of the channel estimation considering the state-of-the-art linear minimum MSE estimator and the class of scaled least-squares estimators. For the data detection, we provide closed-form expressions of the expected value and the variance of the estimated symbols when maximum ratio combining is adopted, which can be exploited to efficiently implement minimum distance detection and, potentially, to design the set of transmit symbols. Our analytical findings explicitly depend on key system parameters such as the signal-to-noise ratio (SNR), the number of user equipments, and the pilot length, thus enabling a precise characterization of the performance of the channel estimation and the data detection with 1-bit ADCs. The proposed analysis highlights a fundamental SNR trade-off, according to which operating at the right noise level significantly enhances the system performance.

We investigate a multi-pair two-way decode-andforward relaying aided massive multiple-input multiple-output antenna system under Rician fading channels, in which multiple pairs of users exchange information through a relay station having multiple antennas. Imperfect channel state information is considered in the context of maximum-ratio processing. Closedform expressions are derived for approximating the sum spectral efficiency (SE) of the system. Moreover, we obtain the powerscaling laws at the users and the relay station to satisfy a certain SE requirement in three typical scenarios. Finally, simulations validate the accuracy of the derived results.

The identification (ID) capacity region of the compound broadcast channel is determined under an average error criterion, where the sender has no channel state information. We give single-letter ID capacity formulas for discrete channels and MIMO Gaussian channels, under an average input constraint. The capacity theorems apply to general broadcast channels. This is in contrast to the transmission setting, where the capacity is only known for special cases, notably the degraded broadcast channel and the MIMO broadcast channel with private messages. Furthermore, the ID capacity region of the compound MIMO broadcast channel is in general larger than the transmission capacity region. This is a departure from the single-user behavior of ID, since the ID capacity of a single-user channel equals the transmission capacity.

In this paper, we design the joint decoding (JD) of non-orthogonal multiple access (NOMA) systems employing short block length codes. We first proposed a low-complexity soft-output ordered-statistics decoding (LC-SOSD) based on a decoding stopping condition, derived from approximations of the a-posterior probabilities of codeword estimates. Simulation results show that LC-SOSD has the similar mutual information transform property to the original SOSD with a significantly reduced complexity. Then, based on the analysis, an efficient JD receiver which combines the parallel interference cancellation (PIC) and the proposed LC-SOSD is developed for NOMA systems. Two novel techniques, namely decoding switch (DS) and decoding combiner (DC), are introduced to accelerate the convergence speed. Simulation results show that the proposed receiver can achieve a lower bit-error rate (BER) compared to the successive interference cancellation (SIC) decoding over the additive-white-Gaussian-noise (AWGN) and fading channel, with a lower complexity in terms of the number of decoding iterations.

In this letter, we consider an intelligent reflecting surface (IRS)-aided wireless relaying system, where a decode-and-forward relay (R) is employed to forward data from a source (S) to a destination (D), aided by M passive reflecting elements. We consider two practical IRS deployment strategies, namely, single-IRS deployment where all reflecting elements are mounted on one single IRS that is deployed near S, R, or D, and multi-IRS deployment where the reflecting elements are allocated over three separate IRSs which are deployed near S, R, and D, respectively. Under the line-of-sight (LoS) channel model, we characterize the capacity scaling orders with respect to an increasing M for the IRS-aided relay system with different IRS deployment strategies. For single-IRS deployment, we show that deploying the IRS near R achieves the highest capacity as compared to that near S or D. While for multi-IRS deployment, we propose a practical cooperative IRS passive beamforming design which is analytically shown to achieve a larger capacity scaling order than the single-IRS deployment (i.e., near R or S/D) when M is sufficiently large. Numerical examples are provided, which validate our theoretical results.

This paper considers the performance of long Reed-Muller (RM) codes transmitted over binary memoryless symmetric (BMS) channels under bitwise maximum-a-posteriori decoding. Its main result is that the family of binary RM codes achieves capacity on any BMS channel with respect to bit-error rate. This resolves a long-standing open problem that connects information theory and error-correcting codes. In contrast with the earlier result for the binary erasure channel, the new proof does not rely on hypercontractivity. Instead, it combines a nesting property of RM codes with new information inequalities relating the generalized extrinsic information transfer function and the extrinsic minimum mean-squared error.

Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a "store-carry and forward" fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts - required to implement the proposed detection strategy - are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.

In this article, wavelet OFDM based non-orthogonal-multiple-access (NOMA) combined with massive MIMO system for 6G networks is proposed. For mMIMO transmissions, the proposed system could enhance the performance by utilizing wavelets to compensate for channel impairments on the transmitted signal. Performance measures include spectral efficiency, symbol error rate (SER), and peak to average ratio (PAPR). Simulation results prove that the proposed system outperforms the conventional OFDM based NOMA systems.

The stringent requirements on reliability and processing delay in the fifth-generation ($5$G) cellular networks introduce considerable challenges in the design of massive multiple-input-multiple-output (M-MIMO) receivers. The two main components of an M-MIMO receiver are a detector and a decoder. To improve the trade-off between reliability and complexity, a Bayesian concept has been considered as a promising approach that enhances classical detectors, e.g. minimum-mean-square-error detector. This work proposes an iterative M-MIMO detector based on a Bayesian framework, a parallel interference cancellation scheme, and a decision statistics combining concept. We then develop a high performance M-MIMO receiver, integrating the proposed detector with a low complexity sequential decoding for polar codes. Simulation results of the proposed detector show a significant performance gain compared to other low complexity detectors. Furthermore, the proposed M-MIMO receiver with sequential decoding ensures one order magnitude lower complexity compared to a receiver with stack successive cancellation decoding for polar codes from the 5G New Radio standard.

北京阿比特科技有限公司