亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problems of adjacency sketching, small-distance sketching, and approximate distance threshold sketching for monotone classes of graphs. The problem is to obtain randomized sketches of the vertices of any graph G in the class, so that adjacency, exact distance thresholds, or approximate distance thresholds of two vertices u, v can be decided (with high probability) from the sketches of u and v, by a decoder that does not know the graph. The goal is to determine when sketches of constant size exist. We show that, for monotone classes of graphs, there is a strict hierarchy: approximate distance threshold sketches imply small-distance sketches, which imply adjacency sketches, whereas the reverse implications are each false. The existence of an adjacency sketch is equivalent to the condition of bounded arboricity, while the existence of small-distance sketches is equivalent to the condition of bounded expansion. Classes of constant expansion admit approximate distance threshold sketches, while a monotone graph class can have arbitrarily small non-constant expansion without admitting an approximate distance threshold sketch.

相關內容

The Exact Circular Pattern Matching (ECPM) problem consists of reporting every occurrence of a rotation of a pattern $P$ in a text $T$. In many real-world applications, specifically in computational biology, circular rotations are of interest because of their prominence in virus DNA. Thus, given no restrictions on pre-processing time, how quickly all such circular rotation occurrences is of interest to many areas of study. We highlight, to the best of our knowledge, a novel approach to the ECPM problem and present four data structures that accompany this approach, each with their own time-space trade-offs, in addition to experimental results to determine the most computationally feasible data structure.

Due to the COVID 19 pandemic, smartphone-based proximity tracing systems became of utmost interest. Many of these systems use BLE signals to estimate the distance between two persons. The quality of this method depends on many factors and, therefore, does not always deliver accurate results. In this paper, we present a multi-channel approach to improve proximity classification, and a novel, publicly available data set that contains matched IEEE 802.11 (2.4 GHz and 5 GHz) and BLE signal strength data, measured in four different environments. We have developed and evaluated a combined classification model based on BLE and IEEE 802.11 signals. Our approach significantly improves the distance classification and consequently also the contact tracing accuracy. We are able to achieve good results with our approach in everyday public transport scenarios. However, in our implementation based on IEEE 802.11 probe requests, we also encountered privacy problems and limitations due to the consistency and interval at which such probes are sent. We discuss these limitations and sketch how our approach could be improved to make it suitable for real-world deployment.

We consider the problem of extracting joint and individual signals from multi-view data, that is data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches, and find joint and individual multi-view signals that align with domain specific knowledge.

Persistent homology is an important methodology from topological data analysis which adapts theory from algebraic topology to data settings and has been successfully implemented in many applications. It produces a statistical summary in the form of a persistence diagram, which captures the shape and size of the data. Despite its widespread use, persistent homology is simply impossible to implement when a dataset is very large. In this paper we address the problem of finding a representative persistence diagram for prohibitively large datasets. We adapt the classical statistical method of bootstrapping, namely, drawing and studying smaller multiple subsamples from the large dataset. We show that the mean of the persistence diagrams of subsamples -- taken as a mean persistence measure computed from the subsamples -- is a valid approximation of the true persistent homology of the larger dataset. We give the rate of convergence of the mean persistence diagram to the true persistence diagram in terms of the number of subsamples and size of each subsample. Given the complex algebraic and geometric nature of persistent homology, we adapt the convexity and stability properties in the space of persistence diagrams together with random set theory to achieve our theoretical results for the general setting of point cloud data. We demonstrate our approach on simulated and real data, including an application of shape clustering on complex large-scale point cloud data.

We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.

We employ kernel-based approaches that use samples from a probability distribution to approximate a Kolmogorov operator on a manifold. The self-tuning variable-bandwidth kernel method [Berry & Harlim, Appl. Comput. Harmon. Anal., 40(1):68--96, 2016] computes a large, sparse matrix that approximates the differential operator. Here, we use the eigendecomposition of the discretization to (i) invert the operator, solving a differential equation, and (ii) represent gradient vector fields on the manifold. These methods only require samples from the underlying distribution and, therefore, can be applied in high dimensions or on geometrically complex manifolds when spatial discretizations are not available. We also employ an efficient $k$-$d$ tree algorithm to compute the sparse kernel matrix, which is a computational bottleneck.

The binary rank of a $0,1$ matrix is the smallest size of a partition of its ones into monochromatic combinatorial rectangles. A matrix $M$ is called $(k_1, \ldots, k_m ; n_1, \ldots, n_m)$ circulant block diagonal if it is a block matrix with $m$ diagonal blocks, such that for each $i \in [m]$, the $i$th diagonal block of $M$ is the circulant matrix whose first row has $k_i$ ones followed by $n_i-k_i$ zeros, and all of whose other entries are zeros. In this work, we study the binary rank of these matrices and of their complement. In particular, we compare the binary rank of these matrices to their rank over the reals, which forms a lower bound on the former. We present a general method for proving upper bounds on the binary rank of block matrices that have diagonal blocks of some specified structure and ones elsewhere. Using this method, we prove that the binary rank of the complement of a $(k_1, \ldots, k_m ; n_1, \ldots, n_m)$ circulant block diagonal matrix for integers satisfying $n_i>k_i>0$ for each $i \in [m]$ exceeds its real rank by no more than the maximum of $\gcd(n_i,k_i)-1$ over all $i \in [m]$. We further present several sufficient conditions for the binary rank of these matrices to strictly exceed their real rank. By combining the upper and lower bounds, we determine the exact binary rank of various families of matrices and, in addition, significantly generalize a result of Gregory. Motivated by a question of Pullman, we study the binary rank of $k$-regular $0,1$ matrices and of their complement. As an application of our results on circulant block diagonal matrices, we show that for every $k \geq 2$, there exist $k$-regular $0,1$ matrices whose binary rank is strictly larger than that of their complement. Furthermore, we exactly determine for every integer $r$, the smallest possible binary rank of the complement of a $2$-regular $0,1$ matrix with binary rank $r$.

In this paper, we have proposed a public key cryptography using recursive block matrices involving generalized Fibonacci numbers over a finite field Fp. For this, we define multinacci block matrices, a type of upper triangular matrix involving multinacci matrices at diagonal places and obtained some of its algebraic properties. Moreover, we have set up a method for key element agreement at end users, which makes the cryptography more efficient. The proposed cryptography comes with a large keyspace and its security relies on the Discrete Logarithm Problem(DLP).

In this paper, we propose a depth-first search (DFS) algorithm for searching maximum matchings in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative alternating paths in the super-vertices shrunk from blossoms, the newly proposed algorithm does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the redundant data structures. A benefit of our technique is to avoid spending time on shrinking and expanding blossoms. This DFS algorithm can determine a maximum matching of a general graph with $m$ edges and $n$ vertices in $O(mn)$ time with space complexity $O(n)$.

We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.

北京阿比特科技有限公司