亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Under two-phase designs, the outcome and several covariates and confounders are measured in the first phase, and a new predictor of interest, which may be costly to collect, can be measured on a subsample in the second phase, without incurring the costs of recruiting subjects. By using the information gathered in the first phase, the second-phase subsample can be selected to enhance the efficiency of testing and estimating the effect of the new predictor on the outcome. Past studies have focused on optimal two-phase sampling schemes for statistical inference on local ($\beta = o(1)$) effects of the predictor of interest. In this study, we propose an extension of the two-phase designs that employs an optimal sampling scheme for estimating predictor effects with pseudo conditional likelihood estimators in case-control studies. This approach is applicable to both local and non-local effects. We demonstrate the effectiveness of the proposed sampling scheme through simulation studies and analysis of data from 170 patients hospitalized for treatment of COVID-19. The results show a significant improvement in the estimation of the parameter of interest.

相關內容

Standardness is a popular assumption in the literature on set estimation. It also appears in statistical approaches to topological data analysis, where it is common to assume that the data were sampled from a probability measure that satisfies the standard assumption. Relevant results in this field, such as rates of convergence and confidence sets, depend on the standardness parameter, which in practice may be unknown. In this paper, we review the notion of standardness and its connection to other geometrical restrictions. We prove the almost sure consistency of a plug-in type estimator for the so-called standardness constant, already studied in the literature. We propose a method to correct the bias of the plug-in estimator and corroborate our theoretical findings through a small simulation study. We also show that it is not possible to determine, based on a finite sample, whether a probability measure satisfies the standard assumption.

Causal inference in spatial settings is met with unique challenges and opportunities. In spatial settings, a unit's outcome might be affected by the exposure at many locations and the confounders might be spatially structured. Using causal diagrams, we investigate the complications that arise when investigating causal relationships from spatial data. We illustrate that spatial confounding and interference can manifest as each other, meaning that investigating the presence of one can lead to wrongful conclusions in the presence of the other. We also show that statistical dependencies in the exposure can render standard analyses invalid, which can have crucial implications for understanding the effect of interventions on dependent units. Based on the conclusions from this investigation, we propose a parametric approach that simultaneously accounts for interference and mitigates bias from local and neighborhood unmeasured spatial confounding. We show that incorporating an exposure model is necessary from a Bayesian perspective. Therefore, the proposed approach is based on modeling the exposure and the outcome simultaneously while accounting for the presence of common spatially-structured unmeasured predictors. We illustrate our approach with a simulation study and with an analysis of the local and interference effects of sulfur dioxide emissions from power plants on cardiovascular mortality.

The primary objective of this scholarly work is to develop two estimation procedures - maximum likelihood estimator (MLE) and method of trimmed moments (MTM) - for the mean and variance of lognormal insurance payment severity data sets affected by different loss control mechanism, for example, truncation (due to deductibles), censoring (due to policy limits), and scaling (due to coinsurance proportions), in insurance and financial industries. Maximum likelihood estimating equations for both payment-per-payment and payment-per-loss data sets are derived which can be solved readily by any existing iterative numerical methods. The asymptotic distributions of those estimators are established via Fisher information matrices. Further, with a goal of balancing efficiency and robustness and to remove point masses at certain data points, we develop a dynamic MTM estimation procedures for lognormal claim severity models for the above-mentioned transformed data scenarios. The asymptotic distributional properties and the comparison with the corresponding MLEs of those MTM estimators are established along with extensive simulation studies. Purely for illustrative purpose, numerical examples for 1500 US indemnity losses are provided which illustrate the practical performance of the established results in this paper.

When evaluating partial effects, it is important to distinguish between structural endogeneity and measurement errors. In contrast to linear models, these two sources of endogeneity affect partial effects differently in nonlinear models. We study this issue focusing on the Instrumental Variable (IV) Probit and Tobit models. We show that even when a valid IV is available, failing to differentiate between the two types of endogeneity can lead to either under- or over-estimation of the partial effects. We develop simple estimators of the bounds on the partial effects and provide easy to implement confidence intervals that correctly account for both types of endogeneity. We illustrate the methods in a Monte Carlo simulation and an empirical application.

We study statistical inference for the optimal transport (OT) map (also known as the Brenier map) from a known absolutely continuous reference distribution onto an unknown finitely discrete target distribution. We derive limit distributions for the $L^p$-error with arbitrary $p \in [1,\infty)$ and for linear functionals of the empirical OT map, together with their moment convergence. The former has a non-Gaussian limit, whose explicit density is derived, while the latter attains asymptotic normality. For both cases, we also establish consistency of the nonparametric bootstrap. The derivation of our limit theorems relies on new stability estimates of functionals of the OT map with respect to the dual potential vector, which may be of independent interest. We also discuss applications of our limit theorems to the construction of confidence sets for the OT map and inference for a maximum tail correlation.

Heterogeneity and comorbidity are two interwoven challenges associated with various healthcare problems that greatly hampered research on developing effective treatment and understanding of the underlying neurobiological mechanism. Very few studies have been conducted to investigate heterogeneous causal effects (HCEs) in graphical contexts due to the lack of statistical methods. To characterize this heterogeneity, we first conceptualize heterogeneous causal graphs (HCGs) by generalizing the causal graphical model with confounder-based interactions and multiple mediators. Such confounders with an interaction with the treatment are known as moderators. This allows us to flexibly produce HCGs given different moderators and explicitly characterize HCEs from the treatment or potential mediators on the outcome. We establish the theoretical forms of HCEs and derive their properties at the individual level in both linear and nonlinear models. An interactive structural learning is developed to estimate the complex HCGs and HCEs with confidence intervals provided. Our method is empirically justified by extensive simulations and its practical usefulness is illustrated by exploring causality among psychiatric disorders for trauma survivors.

Entropic optimal transport (EOT) presents an effective and computationally viable alternative to unregularized optimal transport (OT), offering diverse applications for large-scale data analysis. In this work, we derive novel statistical bounds for empirical plug-in estimators of the EOT cost and show that their statistical performance in the entropy regularization parameter $\epsilon$ and the sample size $n$ only depends on the simpler of the two probability measures. For instance, under sufficiently smooth costs this yields the parametric rate $n^{-1/2}$ with factor $\epsilon^{-d/2}$, where $d$ is the minimum dimension of the two population measures. This confirms that empirical EOT also adheres to the lower complexity adaptation principle, a hallmark feature only recently identified for unregularized OT. As a consequence of our theory, we show that the empirical entropic Gromov-Wasserstein distance and its unregularized version for measures on Euclidean spaces also obey this principle. Additionally, we comment on computational aspects and complement our findings with Monte Carlo simulations. Our techniques employ empirical process theory and rely on a dual formulation of EOT over a single function class. Crucial to our analysis is the observation that the entropic cost-transformation of a function class does not increase its uniform metric entropy by much.

We consider a new framework where a continuous, though bounded, random variable has unobserved bounds that vary over time. In the context of univariate time series, we look at the bounds as parameters of the distribution of the bounded random variable. We introduce an extended log-likelihood estimation and design algorithms to track the bound through online maximum likelihood estimation. Since the resulting optimization problem is not convex, we make use of recent theoretical results on Normalized Gradient Descent (NGD) for quasiconvex optimization, to eventually derive an Online Normalized Gradient Descent algorithm. We illustrate and discuss the workings of our approach based on both simulation studies and a real-world wind power forecasting problem.

Intraday electricity markets play an increasingly important role in balancing the intermittent generation of renewable energy resources, which creates a need for accurate probabilistic price forecasts. However, research to date has focused on univariate approaches, while in many European intraday electricity markets all delivery periods are traded in parallel. Thus, the dependency structure between different traded products and the corresponding cross-product effects cannot be ignored. We aim to fill this gap in the literature by using copulas to model the high-dimensional intraday price return vector. We model the marginal distribution as a zero-inflated Johnson's $S_U$ distribution with location, scale and shape parameters that depend on market and fundamental data. The dependence structure is modelled using latent beta regression to account for the particular market structure of the intraday electricity market, such as overlapping but independent trading sessions for different delivery days. We allow the dependence parameter to be time-varying. We validate our approach in a simulation study for the German intraday electricity market and find that modelling the dependence structure improves the forecasting performance. Additionally, we shed light on the impact of the single intraday coupling (SIDC) on the trading activity and price distribution and interpret our results in light of the market efficiency hypothesis. The approach is directly applicable to other European electricity markets.

Statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability for developing a desirable estimator for treatment effects, especially in the case when there are a large number of features in estimation. To make efforts to address the issue, we propose a score-based framework for estimating the Conditional Average Treatment Effect (CATE) function in this paper. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation, (ii) utilize non-parametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state of the art methods. We also evaluate empirical performance in real-life settings, using two observational data from a clinical trial and a complex social survey, and interpret policy implications following the numerical results.

北京阿比特科技有限公司