A proper $k$-coloring of a graph $G$ is a \emph{neighbor-locating $k$-coloring} if for each pair of vertices in the same color class, the sets of colors found in their neighborhoods are different. The neighbor-locating chromatic number $\chi_{NL}(G)$ is the minimum $k$ for which $G$ admits a neighbor-locating $k$-coloring. A proper $k$-coloring of a graph $G$ is a \emph{locating $k$-coloring} if for each pair of vertices $x$ and $y$ in the same color-class, there exists a color class $S_i$ such that $d(x,S_i)\neq d(y,S_i)$. The locating chromatic number $\chi_{L}(G)$ is the minimum $k$ for which $G$ admits a locating $k$-coloring. It follows that $\chi(G)\leq\chi_L(G)\leq\chi_{NL}(G)$ for any graph $G$, where $\chi(G)$ is the usual chromatic number of $G$. We show that for any three integers $p,q,r$ with $2\leq p\leq q\leq r$ (except when $2=p=q<r$), there exists a connected graph $G_{p,q,r}$ with $\chi(G_{p,q,r})=p$, $\chi_L(G_{p,q,r})=q$ and $\chi_{NL}(G_{p,q,r})=r$. We also show that the locating chromatic number (resp., neighbor-locating chromatic number) of an induced subgraph of a graph $G$ can be arbitrarily larger than that of $G$. Alcon \textit{et al.} showed that the number $n$ of vertices of $G$ is bounded above by $k(2^{k-1}-1)$, where $\chi_{NL}(G)=k$ and $G$ is connected (this bound is tight). When $G$ has maximum degree $\Delta$, they also showed that a smaller upper-bound on $n$ of order $k^{\Delta+1}$ holds. We generalize the latter by proving that if $G$ has order $n$ and at most $an+b$ edges, then $n$ is upper-bounded by a bound of the order of $k^{2a+1}+2b$. Moreover, we describe constructions of such graphs which are close to reaching the bound.
The semi-random graph process is a single player game in which the player is initially presented an empty graph on $n$ vertices. In each round, a vertex $u$ is presented to the player independently and uniformly at random. The player then adaptively selects a vertex $v$, and adds the edge $uv$ to the graph. For a fixed monotone graph property, the objective of the player is to force the graph to satisfy this property with high probability in as few rounds as possible. In this paper, we investigate the following three properties: containing a complete graph of order $k$, having the chromatic number at least $k$, and not having an independent set of size at least $k$.
We prove an optimal mixing time bound on the single-site update Markov chain known as the Glauber dynamics or Gibbs sampling in a variety of settings. Our work presents an improved version of the spectral independence approach of Anari et al. (2020) and shows $O(n\log{n})$ mixing time on any $n$-vertex graph of bounded degree when the maximum eigenvalue of an associated influence matrix is bounded. As an application of our results, for the hard-core model on independent sets weighted by a fugacity $\lambda$, we establish $O(n\log{n})$ mixing time for the Glauber dynamics on any $n$-vertex graph of constant maximum degree $\Delta$ when $\lambda<\lambda_c(\Delta)$ where $\lambda_c(\Delta)$ is the critical point for the uniqueness/non-uniqueness phase transition on the $\Delta$-regular tree. More generally, for any antiferromagnetic 2-spin system we prove $O(n\log{n})$ mixing time of the Glauber dynamics on any bounded degree graph in the corresponding tree uniqueness region. Our results apply more broadly; for example, we also obtain $O(n\log{n})$ mixing for $q$-colorings of triangle-free graphs of maximum degree $\Delta$ when the number of colors satisfies $q > \alpha \Delta$ where $\alpha \approx 1.763$, and $O(m\log{n})$ mixing for generating random matchings of any graph with bounded degree and $m$ edges.
In a recent paper by a superset of the authors it was proved that for every primitive 3-constrained space $\Gamma$ of finite diameter $\delta$ from Cherlin's catalogue of metrically homogeneous graphs, there exists a finite family $\mathcal F$ of $\{1,\ldots, \delta\}$-edge-labelled cycles such that a $\{1,\ldots, \delta\}$-edge-labelled graph is a subgraph of $\Gamma$ if and only if it contains no homomorphic images of cycles from $\mathcal F$. However, the cycles in the families $\mathcal F$ were not described explicitly as it was not necessary for the analysis of Ramsey expansions and the extension property for partial automorphisms. This paper fills this gap by providing an explicit description of the cycles in the families $\mathcal F$, heavily using the previous result in the process. Additionally, we explore the potential applications of this result, such as interpreting the graphs as semigroup-valued metric spaces or homogenizations of $\omega$-categorical $\{1,\delta\}$-edge-labelled graphs.
We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index Sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of Sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of MSE$^{-1}$, while single level methods require MSE$^{-\xi}$ for $\xi>1$. This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in $1$ and $2$ spatial dimensions, where $\xi=5/4$ and $\xi=3/2$, respectively. It is also illustrated on a more challenging log Gaussian process models, where single level complexity is approximately $\xi=9/4$ and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $\xi = 5/4 + \omega$, for any $\omega > 0$, whereas our method is again canonical.
This paper studies the third-order characteristic of nonsingular discrete memoryless channels and the Gaussian channel with a maximal power constraint. The third-order term in our expansions employs a new quantity here called the \emph{channel skewness}, which affects the approximation accuracy more significantly as the error probability decreases. For the Gaussian channel, evaluating Shannon's (1959) random coding and sphere-packing bounds in the central limit theorem (CLT) regime enables exact computation of the channel skewness. For discrete memoryless channels, this work generalizes Moulin's (2017) bounds on the asymptotic expansion of the maximum achievable message set size for nonsingular channels from the CLT regime to include the moderate deviations (MD) regime, thereby refining Altu\u{g} and Wagner's (2014) MD result. For an example binary symmetric channel and most practically important $(n, \epsilon)$ pairs, including $n \in [100, 500]$ and $\epsilon \in [10^{-10}, 10^{-1}]$, an approximation up to the channel skewness is the most accurate among several expansions in the literature. A derivation of the third-order term in the type-II error exponent of binary hypothesis testing in the MD regime is also included; the resulting third-order term is similar to the channel skewness.
In fully dynamic clustering problems, a clustering of a given data set in a metric space must be maintained while it is modified through insertions and deletions of individual points. In this paper, we resolve the complexity of fully dynamic $k$-center clustering against both adaptive and oblivious adversaries. Against oblivious adversaries, we present the first algorithm for fully dynamic $k$-center in an arbitrary metric space that maintains an optimal $(2+\epsilon)$-approximation in $O(k \cdot \mathrm{polylog}(n,\Delta))$ amortized update time. Here, $n$ is an upper bound on the number of active points at any time, and $\Delta$ is the aspect ratio of the metric space. Previously, the best known amortized update time was $O(k^2\cdot \mathrm{polylog}(n,\Delta))$, and is due to Chan, Gourqin, and Sozio (2018). Moreover, we demonstrate that our runtime is optimal up to $\mathrm{polylog}(n,\Delta)$ factors. In fact, we prove that even offline algorithms for $k$-clustering tasks in arbitrary metric spaces, including $k$-medians, $k$-means, and $k$-center, must make at least $\Omega(n k)$ distance queries to achieve any non-trivial approximation factor. This implies a lower bound of $\Omega(k)$ which holds even for the insertions-only setting. We also show deterministic lower and upper bounds for adaptive adversaries, demonstrate that an update time sublinear in $k$ is possible against oblivious adversaries for metric spaces which admit locally sensitive hash functions (LSH) and give the first fully dynamic $O(1)$-approximation algorithms for the closely related $k$-sum-of-radii and $k$-sum-of-diameter problems.
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been considered in the literature: families of sum-rank-metric codes whose block size grows in the code length. We also provide two genericity results: we show that random linear codes achieve almost the sum-rank-metric Gilbert--Varshamov bound with high probability. Furthermore, we derive bounds on the probability that a random linear code attains the sum-rank-metric Singleton bound, showing that for large enough extension fields, almost all linear codes achieve it.
An edge-coloring of a graph $G$ with colors $1,\ldots,t$ is called an \emph{interval $t$-coloring} if all colors are used and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. In 1990, Kamalian proved that if a graph $G$ with at least one edge has an interval $t$-coloring, then $t\leq 2|V(G)|-3$. In 2002, Axenovich improved this upper bound for planar graphs: if a planar graph $G$ admits an interval $t$-coloring, then $t\leq \frac{11}{6}|V(G)|$. In the same paper Axenovich suggested a conjecture that if a planar graph $G$ has an interval $t$-coloring, then $t\leq \frac{3}{2}|V(G)|$. In this paper we confirm the conjecture by showing that if a planar graph $G$ admits an interval $t$-coloring, then $t\leq \frac{3|V(G)|-4}{2}$. We also prove that if an outerplanar graph $G$ has an interval $t$-coloring, then $t\leq |V(G)|-1$. Moreover, all these upper bounds are sharp.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.