亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel and first-of-its-kind information-theoretic framework for the key design consideration and implementation of a ground-to-UAV (G2U) communication network to minimize end-to-end transmission delay in the presence of interference. The proposed framework is useful as it describes the minimum transmission latency for an uplink ground-to-UAV communication must satisfy while achieving a given level of reliability. To characterize the transmission delay, we utilize Fano's inequality and derive the tight upper bound for the capacity for the G2U uplink channel in the presence of interference, noise, and potential jamming. Subsequently, given the reliability constraint, the error exponent is obtained for the given channel. Furthermore, a relay UAV in the dual-hop relay mode, with amplify-and-forward (AF) protocol, is considered, for which we jointly obtain the optimal positions of the relay and the receiver UAVs in the presence of interference. Interestingly, in our study, we find that for both the point-to-point and relayed links, increasing the transmit power may not always be an optimal solution for delay minimization problems. Moreover, we prove that there exists an optimal height that minimizes the end-to-end transmission delay in the presence of interference. The proposed framework can be used in practice by a network controller as a system parameters selection criteria, where among a set of parameters, the parameters leading to the lowest transmission latency can be incorporated into the transmission. The based analysis further set the baseline assessment when applying Command and Control (C2) standards to mission-critical G2U and UAV-to-UAV(U2U) services.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Deep learning (DL) is characterised by its dynamic nature, with new deep neural network (DNN) architectures and approaches emerging every few years, driving the field's advancement. At the same time, the ever-increasing use of mobile devices (MDs) has resulted in a surge of DNN-based mobile applications. Although traditional architectures, like CNNs and RNNs, have been successfully integrated into MDs, this is not the case for Transformers, a relatively new model family that has achieved new levels of accuracy across AI tasks, but poses significant computational challenges. In this work, we aim to make steps towards bridging this gap by examining the current state of Transformers' on-device execution. To this end, we construct a benchmark of representative models and thoroughly evaluate their performance across MDs with different computational capabilities. Our experimental results show that Transformers are not accelerator-friendly and indicate the need for software and hardware optimisations to achieve efficient deployment.

In this paper, we propose a novel complex convolutional neural network (CNN) CSI enhancer for integrated sensing and communications (ISAC), which exploits the correlation between the sensing parameters (such as angle-of-arrival and range) and the channel state information (CSI) to significantly improve the CSI estimation accuracy and further enhance the sensing accuracy. Within the CNN CSI enhancer, we use the complex-valued computation layers to form the CNN, which maintains the phase information of CSI. We also transform the CSI into the sparse angle-delay domain, leading to heatmap images with prominent peaks that can be efficiently processed by CNN. Based on the enhanced CSI outputs, we further propose a novel biased fast Fourier transform (FFT)-based sensing scheme for improving the range sensing accuracy, by artificially introducing phase biasing terms. Extensive simulation results show that the ISAC complex CNN CSI enhancer can converge within 30 training epochs. The normalized mean square error (NMSE) of its CSI estimates is about 17 dB lower than that of the linear minimum mean square error (LMMSE) estimator, and the bit error rate (BER) of demodulation using the enhanced CSI estimation approaches that with perfect CSI. Finally, the range estimation MSE of the proposed biased FFT-based sensing method approaches that of the subspace-based sensing method, at a much lower complexity.

We present a finite element discretisation to model the interaction between a poroelastic structure and an elastic medium. The consolidation problem considers fully coupled deformations across an interface, ensuring continuity of displacement and total traction, as well as no-flux for the fluid phase. Our formulation of the poroelasticity equations incorporates displacement, fluid pressure, and total pressure, while the elasticity equations adopt a displacement-pressure formulation. Notably, the transmission conditions at the interface are enforced without the need for Lagrange multipliers. We demonstrate the stability and convergence of the divergence-conforming finite element method across various polynomial degrees. The a priori error bounds remain robust, even when considering large variations in intricate model parameters such as Lam\'e constants, permeability, and storativity coefficient. To enhance computational efficiency and reliability, we develop residual-based a posteriori error estimators that are independent of the aforementioned coefficients. Additionally, we devise parameter-robust and optimal block diagonal preconditioners. Through numerical examples, including adaptive scenarios, we illustrate the scheme's properties such as convergence and parameter robustness.

The increasingly crowded spectrum has spurred the design of joint radar-communications systems that share hardware resources and efficiently use the radio frequency spectrum. We study a general spectral coexistence scenario, wherein the channels and transmit signals of both radar and communications systems are unknown at the receiver. In this dual-blind deconvolution (DBD) problem, a common receiver admits a multi-carrier wireless communications signal that is overlaid with the radar signal reflected off multiple targets. The communications and radar channels are represented by continuous-valued range-time and Doppler velocities of multiple transmission paths and multiple targets. We exploit the sparsity of both channels to solve the highly ill-posed DBD problem by casting it into a sum of multivariate atomic norms (SoMAN) minimization. We devise a semidefinite program to estimate the unknown target and communications parameters using the theories of positive-hyperoctant trigonometric polynomials (PhTP). Our theoretical analyses show that the minimum number of samples required for near-perfect recovery is dependent on the logarithm of the maximum of number of radar targets and communications paths rather than their sum. We show that our SoMAN method and PhTP formulations are also applicable to more general scenarios such as unsynchronized transmission, the presence of noise, and multiple emitters. Numerical experiments demonstrate great performance enhancements during parameter recovery under different scenarios.

We study a wireless jamming problem consisting of the competition between a legitimate receiver and a jammer, as a zero-sum game with the value to maximize/minimize being the channel capacity at the receiver's side. Most of the approaches found in the literature consider the two players to be stationary nodes. Instead, we investigate what happens when they can change location, specifically moving along a linear geometry. We frame this at first as a static game, which can be solved in closed form, and subsequently we extend it to a dynamic game, under three different versions for what concerns completeness/perfection of mutual information about the adversary's position, corresponding to different assumptions of concealment/sequentiality of the moves, respectively. We first provide some theoretical conditions that hold for the static game and also help identify good strategies valid under any setup, including dynamic games. Since dynamic games, although more realistic, are characterized by an exploding strategy space, we exploit reinforcement learning to obtain efficient strategies leading to equilibrium outcomes. We show how theoretical findings can be used to train smart agents to play the game, and validate our approach in practical setups.

Integrated Sensing and Communication (ISAC) is an emerging technology that integrates wireless sensing and communication into a single system, transforming many applications, including cooperative mobile robotics. However, in scenarios where radio communications are unavailable, alternative approaches are needed. In this paper, we propose a new optical ISAC (OISAC) scheme for cooperative mobile robots by integrating camera sensing and screen-camera communication (SCC). Unlike previous throughput-oriented SCC designs that work with stationary SCC links, our OISAC scheme is designed for real-time control of mobile robots. It addresses new problems such as image blur and long image display delay. As a case study, we consider the leader-follower formation control problem, an essential part of cooperative mobile robotics. The proposed OISAC scheme enables the follower robot to simultaneously acquire the information shared by the leader and sense the relative pose to the leader using only RGB images captured by its onboard camera. We then design a new control law that can leverage all the information acquired by the camera to achieve stable and accurate formations. We design and conduct real-world experiments involving uniform and nonuniform motions to evaluate the proposed system and demonstrate the advantages of applying OISAC over a benchmark approach that uses extended Kalman filtering (EKF) to estimate the leader's states. Our results show that the proposed OISAC-augmented leader-follower formation system achieves better performance in terms of accuracy, stability, and robustness.

This article focuses on the near-field effect in terahertz (THz) communications and sensing systems. By equipping with extremely large-scale antenna arrays (ELAAs), the near-field region in THz systems can be possibly extended to hundreds of meters in proximity to THz transceivers, which necessitates the consideration of near-field effect in the THz band both for the communications and sensing. We first review the main characteristics of the near-field region in the THz bands. The signal propagation in the near-field region is characterized by spherical waves rather than planar waves in the far-field region. This distinction introduces a new distance dimension to the communication and sensing channels, which brings new opportunities and challenges for both THz communications and sensing. More particularly, 1) For THz communications, the near-field effect enables a new mechanism for beamforming, namely, beamfocusing, in the focusing region. Furthermore, in THz multiple-input and multiple-output (MIMO) systems, the near-field effect can be exploited to combat the multiplexing gain degradation caused by the sparse THz channels. To address the near-field beam split effect caused by the conventional frequency-independent hybrid beamforming architecture in THz wideband communications, we propose a pair of wideband beamforming optimization approaches by a new hybrid beamforming architecture based on true-time-delayers (TTDs). 2) For THz sensing, joint angle and distance sensing can be achieved in the near-field region. Additionally, the near-field beam split becomes a beneficial effect for enhancing the sensing performance by focusing on multiple possible target locations rather than a drawback encountered in communications. Finally, several topics for future research are discussed.

Time delay neural network (TDNN) has been proven to be efficient for speaker verification. One of its successful variants, ECAPA-TDNN, achieved state-of-the-art performance at the cost of much higher computational complexity and slower inference speed. This makes it inadequate for scenarios with demanding inference rate and limited computational resources. We are thus interested in finding an architecture that can achieve the performance of ECAPA-TDNN and the efficiency of vanilla TDNN. In this paper, we propose an efficient network based on context-aware masking, namely CAM++, which uses densely connected time delay neural network (D-TDNN) as backbone and adopts a novel multi-granularity pooling to capture contextual information at different levels. Extensive experiments on two public benchmarks, VoxCeleb and CN-Celeb, demonstrate that the proposed architecture outperforms other mainstream speaker verification systems with lower computational cost and faster inference speed.

UAV (unmanned aerial vehicle) is rapidly gaining traction in various human activities and has become an integral component of the satellite-air-ground-sea (SAGS) integrated network. As high-speed moving objects, UAVs not only have extremely strict requirements for communication delay, but also cannot be maliciously controlled as a weapon by the attacker. Therefore, an efficient and secure communication method designed for UAV networks is necessary. We propose a communication mechanism ESCM. For high efficiency, ESCM provides a routing protocol based on the artificial bee colony (ABC) algorithm to accelerate communications between UAVs. Meanwhile, we use blockchain to guarantee the security of UAV networks. However, blockchain has unstable links in high-mobility networks resulting in low consensus efficiency and high communication overhead. Consequently, ESCM introduces digital twin (DT), which transforms the UAV network into a static network by mapping UAVs from the physical world into Cyberspace. This virtual UAV network is called CyberUAV. Then, in CyberUAV, we design a blockchain consensus based on network coding, named Proof of Network Coding (PoNC). Analysis and simulation show that the above modules in ESCM have advantages over existing schemes. Through ablation studies, we demonstrate that these modules are indispensable for efficient and secure communication of UAV networks.

Federated bilevel optimization has attracted increasing attention due to emerging machine learning and communication applications. The biggest challenge lies in computing the gradient of the upper-level objective function (i.e., hypergradient) in the federated setting due to the nonlinear and distributed construction of a series of global Hessian matrices. In this paper, we propose a novel communication-efficient federated hypergradient estimator via aggregated iterative differentiation (AggITD). AggITD is simple to implement and significantly reduces the communication cost by conducting the federated hypergradient estimation and the lower-level optimization simultaneously. We show that the proposed AggITD-based algorithm achieves the same sample complexity as existing approximate implicit differentiation (AID)-based approaches with much fewer communication rounds in the presence of data heterogeneity. Our results also shed light on the great advantage of ITD over AID in the federated/distributed hypergradient estimation. This differs from the comparison in the non-distributed bilevel optimization, where ITD is less efficient than AID. Our extensive experiments demonstrate the great effectiveness and communication efficiency of the proposed method.

北京阿比特科技有限公司