In this paper, we consider a well-known sparse optimization problem that aims to find a sparse solution of a possibly noisy underdetermined system of linear equations. Mathematically, it can be modeled in a unified manner by minimizing $\|\bf{x}\|_p^p$ subject to $\|A\bf{x}-\bf{b}\|_q\leq\sigma$ for given $A \in \mathbb{R}^{m \times n}$, $\bf{b}\in\mathbb{R}^m$, $\sigma \geq0$, $0\leq p\leq 1$ and $q \geq 1$. We then study various properties of the optimal solutions of this problem. Specifically, without any condition on the matrix $A$, we provide upper bounds in cardinality and infinity norm for the optimal solutions, and show that all optimal solutions must be on the boundary of the feasible set when $0<p<1$. Moreover, for $q \in \{1,\infty\}$, we show that the problem with $0<p<1$ has a finite number of optimal solutions and prove that there exists $0<p^*<1$ such that the solution set of the problem with any $0<p<p^*$ is contained in the solution set of the problem with $p=0$ and there further exists $0<\bar{p}<p^*$ such that the solution set of the problem with any $0<p\leq\bar{p}$ remains unchanged. An estimation of such $p^*$ is also provided. In addition, to solve the constrained nonconvex non-Lipschitz $L_p$-$L_1$ problem ($0<p<1$ and $q=1$), we propose a smoothing penalty method and show that, under some mild conditions, any cluster point of the sequence generated is a KKT point of our problem. Some numerical examples are given to implicitly illustrate the theoretical results and show the efficiency of the proposed algorithm for the constrained $L_p$-$L_1$ problem under different noises.
We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.
In most optimization problems, users have a clear understanding of the function to optimize (e.g., minimize the makespan for scheduling problems). However, the constraints may be difficult to state and their modelling often requires expertise in Constraint Programming. Active constraint acquisition has been successfully used to support non-experienced users in learning constraint networks through the generation of a sequence of queries. In this paper, we propose Learn&Optimize, a method to solve optimization problems with known objective function and unknown constraint network. It uses an active constraint acquisition algorithm which learns the unknown constraints and computes boundaries for the optimal solution during the learning process. As a result, our method allows users to solve optimization problems without learning the overall constraint network.
In this work, we consider the linear inverse problem $y=Ax+\epsilon$, where $A\colon X\to Y$ is a known linear operator between the separable Hilbert spaces $X$ and $Y$, $x$ is a random variable in $X$ and $\epsilon$ is a zero-mean random process in $Y$. This setting covers several inverse problems in imaging including denoising, deblurring, and X-ray tomography. Within the classical framework of regularization, we focus on the case where the regularization functional is not given a priori but learned from data. Our first result is a characterization of the optimal generalized Tikhonov regularizer, with respect to the mean squared error. We find that it is completely independent of the forward operator $A$ and depends only on the mean and covariance of $x$. Then, we consider the problem of learning the regularizer from a finite training set in two different frameworks: one supervised, based on samples of both $x$ and $y$, and one unsupervised, based only on samples of $x$. In both cases, we prove generalization bounds, under some weak assumptions on the distribution of $x$ and $\epsilon$, including the case of sub-Gaussian variables. Our bounds hold in infinite-dimensional spaces, thereby showing that finer and finer discretizations do not make this learning problem harder. The results are validated through numerical simulations.
In sparse estimation, such as fused lasso and convex clustering, we apply either the proximal gradient method or the alternating direction method of multipliers (ADMM) to solve the problem. It takes time to include matrix division in the former case, while an efficient method such as FISTA (fast iterative shrinkage-thresholding algorithm) has been developed in the latter case. This paper proposes a general method for converting the ADMM solution to the proximal gradient method, assuming that assumption that the derivative of the objective function is Lipschitz continuous. Then, we apply it to sparse estimation problems, such as sparse convex clustering and trend filtering, and we show by numerical experiments that we can obtain a significant improvement in terms of efficiency.
Optimization problems are crucial in artificial intelligence. Optimization algorithms are generally used to adjust the performance of artificial intelligence models to minimize the error of mapping inputs to outputs. Current evaluation methods on optimization algorithms generally consider the performance in terms of quality. However, not all optimization algorithms for all test cases are evaluated equal from quality, the computation time should be also considered for optimization tasks. In this paper, we investigate the quality and computation time of optimization algorithms in optimization problems, instead of the one-for-all evaluation of quality. We select the well-known optimization algorithms (Bayesian optimization and evolutionary algorithms) and evaluate them on the benchmark test functions in terms of quality and computation time. The results show that BO is suitable to be applied in the optimization tasks that are needed to obtain desired quality in the limited function evaluations, and the EAs are suitable to search the optimal of the tasks that are allowed to find the optimal solution with enough function evaluations. This paper provides the recommendation to select suitable optimization algorithms for optimization problems with different numbers of function evaluations, which contributes to the efficiency that obtains the desired quality with less computation time for optimization problems.
Longest common subsequence ($\mathsf{LCS}$) is a classic and central problem in combinatorial optimization. While $\mathsf{LCS}$ admits a quadratic time solution, recent evidence suggests that solving the problem may be impossible in truly subquadratic time. A special case of $\mathsf{LCS}$ wherein each character appears at most once in every string is equivalent to the longest increasing subsequence problem ($\mathsf{LIS}$) which can be solved in quasilinear time. In this work, we present novel algorithms for approximating $\mathsf{LCS}$ in truly subquadratic time and $\mathsf{LIS}$ in truly sublinear time. Our approximation factors depend on the ratio of the optimal solution size over the input size. We denote this ratio by $\lambda$ and obtain the following results for $\mathsf{LCS}$ and $\mathsf{LIS}$ without any prior knowledge of $\lambda$. $\bullet$ A truly subquadratic time algorithm for $\mathsf{LCS}$ with approximation factor $\Omega(\lambda^3)$. $\bullet$A truly sublinear time algorithm for $\mathsf{LIS}$ with approximation factor $\Omega(\lambda^3)$. Triangle inequality was recently used by [Boroujeni, Ehsani, Ghodsi, HajiAghayi and Seddighin SODA 2018] and [Charkraborty, Das, Goldenberg, Koucky and Saks FOCS 2018] to present new approximation algorithms for edit distance. Our techniques for $\mathsf{LCS}$ extend the notion of triangle inequality to non-metric settings.
We consider the problem of scheduling to minimize mean response time in M/G/1 queues where only estimated job sizes (processing times) are known to the scheduler, where a job of true size $s$ has estimated size in the interval $[\beta s, \alpha s]$ for some $\alpha \geq \beta > 0$. We evaluate each scheduling policy by its approximation ratio, which we define to be the ratio between its mean response time and that of Shortest Remaining Processing Time (SRPT), the optimal policy when true sizes are known. Our question: is there a scheduling policy that (a) has approximation ratio near 1 when $\alpha$ and $\beta$ are near 1, (b) has approximation ratio bounded by some function of $\alpha$ and $\beta$ even when they are far from 1, and (c) can be implemented without knowledge of $\alpha$ and $\beta$? We first show that naively running SRPT using estimated sizes in place of true sizes is not such a policy: its approximation ratio can be arbitrarily large for any fixed $\beta < 1$. We then provide a simple variant of SRPT for estimated sizes that satisfies criteria (a), (b), and (c). In particular, we prove its approximation ratio approaches 1 uniformly as $\alpha$ and $\beta$ approach 1. This is the first result showing this type of convergence for M/G/1 scheduling. We also study the Preemptive Shortest Job First (PSJF) policy, a cousin of SRPT. We show that, unlike SRPT, naively running PSJF using estimated sizes in place of true sizes satisfies criteria (b) and (c), as well as a weaker version of (a).
We give an $\widetilde{O}({m^{3/2 - 1/762} \log (U+W))}$ time algorithm for minimum cost flow with capacities bounded by $U$ and costs bounded by $W$. For sparse graphs with general capacities, this is the first algorithm to improve over the $\widetilde{O}({m^{3/2} \log^{O(1)} (U+W)})$ running time obtained by an appropriate instantiation of an interior point method [Daitch-Spielman, 2008]. Our approach is extending the framework put forth in [Gao-Liu-Peng, 2021] for computing the maximum flow in graphs with large capacities and, in particular, demonstrates how to reduce the problem of computing an electrical flow with general demands to the same problem on a sublinear-sized set of vertices -- even if the demand is supported on the entire graph. Along the way, we develop new machinery to assess the importance of the graph's edges at each phase of the interior point method optimization process. This capability relies on establishing a new connections between the electrical flows arising inside that optimization process and vertex distances in the corresponding effective resistance metric.
This paper considers the classic Online Steiner Forest problem where one is given a (weighted) graph $G$ and an arbitrary set of $k$ terminal pairs $\{\{s_1,t_1\},\ldots ,\{s_k,t_k\}\}$ that are required to be connected. The goal is to maintain a minimum-weight sub-graph that satisfies all the connectivity requirements as the pairs are revealed one by one. It has been known for a long time that no algorithm (even randomized) can be better than $\Omega(\log(k))$-competitive for this problem. Interestingly, a simple greedy algorithm is already very efficient for this problem. This algorithm can be informally described as follows: Upon arrival of a new pair $\{s_i,t_i\}$, connect $s_i$ and $t_i$ with the shortest path in the current metric, contract the metric along the chosen path and wait for the next pair. Although simple and intuitive, greedy proved itself challenging to analyze and its competitive ratio is a long-standing open problem in the area of online algorithms. The last progress on this question is due to an elegant analysis by Awerbuch, Azar, and Bartal [SODA~1996], who showed that greedy is $O(\log^2(k))$-competitive. Our main result is to show that greedy is in fact $O(\log(k)\log\log(k))$-competitive on a wide class of instances. In particular, this wide class of instances contains all the instances that were exhibited in the literature until now.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.