亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spatio-temporal clustering occupies an established role in various fields dealing with geospatial analysis, spanning from healthcare analysis to environmental science. One major challenge are applications in which cluster assignments are dependent on local densities, meaning that higher-density areas should be treated more strictly for spatial clustering and vice versa. Meeting this need, we describe and implement an extended method that covers continuous and adaptive distance rescaling based on kernel density estimates and the orthodromic metric, as well as the distance between time series via dynamic time warping. In doing so, we provide the wider research community, as well as practitioners, with a novel approach to solve an existing challenge as well as an easy-to-handle and robust open-source software tool. The resulting implementation is highly customizable to suit different application cases, and we verify and test the latter on both an idealized scenario and the recreation of prior work on broadband antibiotics prescriptions in Scotland to demonstrate well-behaved comparative performance. Following this, we apply our approach to fire emissions in Sub-Saharan Africa using data from Earth-observing satellites, and show our implementation's ability to uncover seasonality shifts in carbon emissions of subgroups as a result of time series-driven cluster splits.

相關內容

Despite numerous years of research into the merits and trade-offs of various model selection criteria, obtaining robust results that elucidate the behavior of cross-validation remains a challenging endeavor. In this paper, we highlight the inherent limitations of cross-validation when employed to discern the structure of a Gaussian graphical model. We provide finite-sample bounds on the probability that the Lasso estimator for the neighborhood of a node within a Gaussian graphical model, optimized using a prediction oracle, misidentifies the neighborhood. Our results pertain to both undirected and directed acyclic graphs, encompassing general, sparse covariance structures. To support our theoretical findings, we conduct an empirical investigation of this inconsistency by contrasting our outcomes with other commonly used information criteria through an extensive simulation study. Given that many algorithms designed to learn the structure of graphical models require hyperparameter selection, the precise calibration of this hyperparameter is paramount for accurately estimating the inherent structure. Consequently, our observations shed light on this widely recognized practical challenge.

The air-gap macro element is reformulated such that rotation, rotor or stator skewing and rotor eccentricity can be incorporated easily. The air-gap element is evaluated using Fast Fourier Transforms which in combination with the Conjugate Gradient algorithm leads to highly efficient and memory inexpensive iterative solution scheme. The improved air-gap element features beneficial approximation properties and is competitive to moving-band and sliding-surface technique.

This work presents a new hybrid discretization approach to alleviate membrane locking in isogeometric finite element formulations for Kirchhoff-Love shells. The approach is simple, and requires no additional dofs and no static condensation. It does not increase the bandwidth of the tangent matrix and is effective for both linear and nonlinear problems. It combines isogeometric surface discretizations with classical Lagrange-based surface discretizations, and can thus be run with existing isogeometric finite element codes. Also, the stresses can be recovered straightforwardly. The effectiveness of the proposed approach in alleviating, if not eliminating, membrane locking is demonstrated through the rigorous study of the convergence behavior of several classical benchmark problems. Accuracy gains are particularly large in the membrane stresses. The approach is formulated here for quadratic NURBS, but an extension to other discretization types can be anticipated. The same applies to other constraints and associated locking phenomena.

Measures of association between cortical regions based on activity signals provide useful information for studying brain functional connectivity. Difficulties occur with signals of electric neuronal activity, where an observed signal is a mixture, i.e. an instantaneous weighted average of the true, unobserved signals from all regions, due to volume conduction and low spatial resolution. This is why measures of lagged association are of interest, since at least theoretically, "lagged association" is of physiological origin. In contrast, the actual physiological instantaneous zero-lag association is masked and confounded by the mixing artifact. A minimum requirement for a measure of lagged association is that it must not tend to zero with an increase of strength of true instantaneous physiological association. Such biased measures cannot tell apart if a change in its value is due to a change in lagged or a change in instantaneous association. An explicit testable definition for frequency domain lagged connectivity between two multivariate time series is proposed. It is endowed with two important properties: it is invariant to non-singular linear transformations of each vector time series separately, and it is invariant to instantaneous association. As a first sanity check: in the case of two univariate time series, the new definition leads back to the bivariate lagged coherence of 2007 (eqs 25 and 26 in //doi.org/10.48550/arXiv.0706.1776). As a second stronger sanity check: in the case of a univariate and multivariate vector time series, the new measure presented here leads back to the original multivariate lagged coherence in equation 31 of the same 2007 publication (which trivially includes the bivariate case).

In recent literature, for modeling reasons, fractional differential problems have been considered equipped with anti-symmetric boundary conditions. Twenty years ago the anti-reflective boundary conditions were introduced in a context of signal processing and imaging for increasing the quality of the reconstruction of a blurred signal/image contaminated by noise and for reducing the overall complexity to that of few fast sine transforms i.e. to $O(N\log N)$ real arithmetic operations, where $N$ is the number of pixels. Here we consider the anti-symmetric boundary conditions and we introduce the anti-reflective boundary conditions in the context of nonlocal problems of fractional differential type. In the latter context, we study both types of boundary conditions, which in reality are similar in the essentials, from the perspective of computational efficiency, by considering nontruncated and truncated versions. Several numerical tests, tables, and visualizations are provided and critically discussed.

Conventional modelling of networks evolving in time focuses on capturing variations in the network structure. However, the network might be static from the origin or experience only deterministic, regulated changes in its structure, providing either a physical infrastructure or a specified connection arrangement for some other processes. Thus, to detect change in its exploitation, we need to focus on the processes happening on the network. In this work, we present the concept of monitoring random Temporal Edge Network (TEN) processes that take place on the edges of a graph having a fixed structure. Our framework is based on the Generalized Network Autoregressive statistical models with time-dependent exogenous variables (GNARX models) and Cumulative Sum (CUSUM) control charts. To demonstrate its effective detection of various types of change, we conduct a simulation study and monitor the real-world data of cross-border physical electricity flows in Europe.

There has been recently a lot of interest in the analysis of the Stein gradient descent method, a deterministic sampling algorithm. It is based on a particle system moving along the gradient flow of the Kullback-Leibler divergence towards the asymptotic state corresponding to the desired distribution. Mathematically, the method can be formulated as a joint limit of time $t$ and number of particles $N$ going to infinity. We first observe that the recent work of Lu, Lu and Nolen (2019) implies that if $t \approx \log \log N$, then the joint limit can be rigorously justified in the Wasserstein distance. Not satisfied with this time scale, we explore what happens for larger times by investigating the stability of the method: if the particles are initially close to the asymptotic state (with distance $\approx 1/N$), how long will they remain close? We prove that this happens in algebraic time scales $t \approx \sqrt{N}$ which is significantly better. The exploited method, developed by Caglioti and Rousset for the Vlasov equation, is based on finding a functional invariant for the linearized equation. This allows to eliminate linear terms and arrive at an improved Gronwall-type estimate.

Busy-waiting is an important, low-level synchronization pattern that is used to implement higher-level abstractions for synchronization. Its termination depends on cooperation by other threads as well as a fair thread scheduler. We present a general approach for modularly verifying busy-waiting concurrent programs based on higher-order separation logic. The approach combines two strands of prior work. First, the Jacobs and Piessens (2011) higher-order-programming perspective for verifying concurrent modules. Second, the Reinhard and Jacobs (2021) ghost signals approach to verify busy-waiting. The latter uses classical specifications for synchronization constructs where the module creates and discharges obligations. Such specifications, however, fix particular client patterns and would in general require "obligation transfer" to handle more intricate wait dependencies. This precludes clients from performing lock handoffs, an important mechanism to control (un)fairness in the design of locks. Our contribution -- inspired by D'Osualdo, Sutherland, Farzan and Gardner (2021)'s TaDA Live -- is to require the client to create and discharge obligations as necessary to satisfy the module's liveness requirements. However, instead of building these liveness requirements into the logic, we express them by having the module's operations take auxiliary code as arguments whose job it is to generate the call permissions the module needs for its busy-waiting. In the paper we present specifications and proofs in Iris. We validated our approach by developing a (non-foundational) machine-checked proof of a cohort lock -- to the best of our knowledge the first of its kind -- using an encoding of our approach in the VeriFast program verifier for C and Java. This fair lock is implemented on top of another fair lock module and involves lock handoff, thus exercising the asserted contributions.

We present a simple unifying treatment of a large class of applications from statistical mechanics, econometrics, mathematical finance, and insurance mathematics, where stable (possibly subordinated) L\'evy noise arises as a scaling limit of some form of continuous-time random walk (CTRW). For each application, it is natural to rely on weak convergence results for stochastic integrals on Skorokhod space in Skorokhod's J1 or M1 topologies. As compared to earlier and entirely separate works, we are able to give a more streamlined account while also allowing for greater generality and providing important new insights. For each application, we first make clear how the fundamental conclusions for J1 convergent CTRWs emerge as special cases of the same general principles, and we then illustrate how the specific settings give rise to different results for strictly M1 convergent CTRWs.

We propose an adaptive model-predictive controller that balances driving the system to a goal state and seeking system observations that are informative with respect to the parameters of a nonlinear autoregressive exogenous model. The controller's objective function is derived from an expected free energy functional and contains information-theoretic terms expressing uncertainty over model parameters and output predictions. Experiments illustrate how parameter uncertainty affects the control objective and evaluate the proposed controller for a pendulum swing-up task.

北京阿比特科技有限公司