亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In online marketing, the advertisers' goal is usually a tradeoff between achieving high volumes and high profitability. The companies' business units customarily address this tradeoff by maximizing the volumes while guaranteeing a lower bound to the Return On Investment (ROI). This paper investigates combinatorial bandit algorithms for the bid optimization of advertising campaigns subject to uncertain budget and ROI constraints. We study the nature of both the optimization and learning problems. In particular, when focusing on the optimization problem without uncertainty, we show that it is inapproximable within any factor unless P=NP, and we provide a pseudo-polynomial-time algorithm that achieves an optimal solution. When considering uncertainty, we prove that no online learning algorithm can violate the (ROI or budget) constraints during the learning process a sublinear number of times while guaranteeing a sublinear pseudo-regret. Thus, we provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations. We also design its safe version, namely GCB_{safe}, guaranteeing w.h.p. a constant upper bound on the number of constraints violations at the cost of a linear pseudo-regret. More interestingly, we provide an algorithm, namely GCB_{safe}(\psi,\phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances \psi and \phi in the satisfaction of the ROI and budget constraints, respectively. This algorithm actually mitigates the risks due to the constraints violations without precluding the convergence to the optimal solution. Finally, we experimentally compare our algorithms in terms of pseudo-regret/constraint-violation tradeoff in settings generated from real-world data, showing the importance of adopting safety constraints in practice and the effectiveness of our algorithms.

相關內容

Automated vehicles require the ability to cooperate with humans for smooth integration into today's traffic. While the concept of cooperation is well known, developing a robust and efficient cooperative trajectory planning method is still a challenge. One aspect of this challenge is the uncertainty surrounding the state of the environment due to limited sensor accuracy. This uncertainty can be represented by a Partially Observable Markov Decision Process. Our work addresses this problem by extending an existing cooperative trajectory planning approach based on Monte Carlo Tree Search for continuous action spaces. It does so by explicitly modeling uncertainties in the form of a root belief state, from which start states for trees are sampled. After the trees have been constructed with Monte Carlo Tree Search, their results are aggregated into return distributions using kernel regression. We apply two risk metrics for the final selection, namely a Lower Confidence Bound and a Conditional Value at Risk. It can be demonstrated that the integration of risk metrics in the final selection policy consistently outperforms a baseline in uncertain environments, generating considerably safer trajectories.

Interacting agents receive public information at no cost and flexibly acquire private information at a cost proportional to entropy reduction. When a policymaker provides more public information, agents acquire less private information, thus lowering information costs. Does more public information raise or reduce uncertainty faced by agents? Is it beneficial or detrimental to welfare? To address these questions, we examine the impacts of public information on flexible information acquisition in a linear-quadratic-Gaussian game with arbitrary quadratic material welfare. More public information raises uncertainty if and only if the game exhibits strategic complementarity, which can be harmful to welfare. However, when agents acquire a large amount of information, more provision of public information increases welfare through a substantial reduction in the cost of information. We give a necessary and sufficient condition for welfare to increase with public information and identify optimal public information disclosure, which is either full or partial disclosure depending upon the welfare function and the slope of the best response.

Bayesian optimization is a popular method for optimizing expensive black-box functions. Yet it oftentimes struggles in high dimensions where the computation could be prohibitively heavy. To alleviate this problem, we introduce Coordinate backoff Bayesian Optimization (CobBO) with two-stage kernels. During each round, the first stage uses a simple coarse kernel that sacrifices the approximation accuracy for computational efficiency. It captures the global landscape by purposely smoothing away local fluctuations. Then, in the second stage of the same round, past observed points in the full space are projected to the selected subspace to form virtual points. These virtual points, along with the means and variances of their unknown function values estimated using the simple kernel of the first stage, are fitted to a more sophisticated kernel model in the second stage. Within the selected low dimensional subspace, the computational cost of conducting Bayesian optimization therein becomes affordable. To further enhance the performance, a sequence of consecutive observations in the same subspace are collected, which can effectively refine the approximation of the function. This refinement lasts until a stopping rule is met determining when to back off from a certain subspace and switch to another. This decoupling significantly reduces the computational burden in high dimensions, which fully leverages the observations in the whole space rather than only relying on observations in each coordinate subspace. Extensive evaluations show that CobBO finds solutions comparable to or better than other state-of-the-art methods for dimensions ranging from tens to hundreds, while reducing both the trial complexity and computational costs.

A rising number of botnet families have been successfully detected using deep learning architectures. While the variety of attacks increases, these architectures should become more robust against attacks. They have been proven to be very sensitive to small but well constructed perturbations in the input. Botnet detection requires extremely low false-positive rates (FPR), which are not commonly attainable in contemporary deep learning. Attackers try to increase the FPRs by making poisoned samples. The majority of recent research has focused on the use of model loss functions to build adversarial examples and robust models. In this paper, two LSTM-based classification algorithms for botnet classification with an accuracy higher than 98\% are presented. Then, the adversarial attack is proposed, which reduces the accuracy to about30\%. Then, by examining the methods for computing the uncertainty, the defense method is proposed to increase the accuracy to about 70\%. By using the deep ensemble and stochastic weight averaging quantification methods it has been investigated the uncertainty of the accuracy in the proposed methods.

Collision avoidance is a widely investigated topic in robotic applications. When applying collision avoidance techniques to a mobile robot, how to deal with the spatial structure of the robot still remains a challenge. In this paper, we design a configuration-aware safe control law by solving a Quadratic Programming (QP) with designed Control Barrier Functions (CBFs) constraints, which can safely navigate a mobile robotic arm to a desired region while avoiding collision with environmental obstacles. The advantage of our approach is that it correctly and in an elegant way incorporates the spatial structure of the mobile robotic arm. This is achieved by merging geometric restrictions among mobile robotic arm links into CBFs constraints. Simulations on a rigid rod and the modeled mobile robotic arm are performed to verify the feasibility and time-efficiency of proposed method. Numerical results about the time consuming for different degrees of freedom illustrate that our method scales well with dimension.

In this study, we examine a clustering problem in which the covariates of each individual element in a dataset are associated with an uncertainty specific to that element. More specifically, we consider a clustering approach in which a pre-processing applying a non-linear transformation to the covariates is used to capture the hidden data structure. To this end, we approximate the sets representing the propagated uncertainty for the pre-processed features empirically. To exploit the empirical uncertainty sets, we propose a greedy and optimistic clustering (GOC) algorithm that finds better feature candidates over such sets, yielding more condensed clusters. As an important application, we apply the GOC algorithm to synthetic datasets of the orbital properties of stars generated through our numerical simulation mimicking the formation process of the Milky Way. The GOC algorithm demonstrates an improved performance in finding sibling stars originating from the same dwarf galaxy. These realistic datasets have also been made publicly available.

We develop a simple and unified framework for nonlinear variable selection that incorporates model uncertainty and is compatible with a wide range of machine learning models (e.g., tree ensembles, kernel methods and neural network). In particular, for a learned nonlinear model $f(\mathbf{x})$, we consider quantifying the importance of an input variable $\mathbf{x}^j$ using the integrated gradient measure $\psi_j = \Vert \frac{\partial}{\partial \mathbf{x}^j} f(\mathbf{x})\Vert^2_2$. We then (1) provide a principled approach for quantifying variable selection uncertainty by deriving its posterior distribution, and (2) show that the approach is generalizable even to non-differentiable models such as tree ensembles. Rigorous Bayesian nonparametric theorems are derived to guarantee the posterior consistency and asymptotic uncertainty of the proposed approach. Extensive simulation confirms that the proposed algorithm outperforms existing classic and recent variable selection methods.

In this paper, we study the problem of exploring an unknown Region Of Interest (ROI) with a team of aerial robots. The size and shape of the ROI are unknown to the robots. The objective is to find a tour for each robot such that each point in the ROI must be visible from the field-of-view of some robot along its tour. In conventional exploration using ground robots, the ROI boundary is typically also as an obstacle and robots are naturally constrained to the interior of this ROI. Instead, we study the case where aerial robots are not restricted to flying inside the ROI (and can fly over the boundary of the ROI). We propose a recursive depth-first search-based algorithm that yields a constant competitive ratio for the exploration problem. Our analysis also extends to the case where the ROI is translating, \eg, in the case of marine plumes. In the simpler version of the problem where the ROI is modeled as a 2D grid, the competitive ratio is $\frac{2(S_r+S_p)(R+\lfloor\log{R}\rfloor)}{(S_r-S_p)(1+\lfloor\log{R}\rfloor)}$ where $R$ is the number of robots, and $S_r$ and $S_p$ are the robot speed and the ROI speed, respectively. We also consider a more realistic scenario where the ROI shape is not restricted to grid cells but an arbitrary shape. We show our algorithm has $\frac{2(S_r+S_p)(18R+\lfloor\log{R}\rfloor)}{(S_r-S_p)(1+\lfloor\log{R}\rfloor)}$ competitive ratio under some conditions. We empirically verify our algorithm using simulations as well as a proof-of-concept experiment mapping a 2D ROI using an aerial robot with a downwards-facing camera.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.

北京阿比特科技有限公司