亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a simple and unified framework for nonlinear variable selection that incorporates model uncertainty and is compatible with a wide range of machine learning models (e.g., tree ensembles, kernel methods and neural network). In particular, for a learned nonlinear model $f(\mathbf{x})$, we consider quantifying the importance of an input variable $\mathbf{x}^j$ using the integrated gradient measure $\psi_j = \Vert \frac{\partial}{\partial \mathbf{x}^j} f(\mathbf{x})\Vert^2_2$. We then (1) provide a principled approach for quantifying variable selection uncertainty by deriving its posterior distribution, and (2) show that the approach is generalizable even to non-differentiable models such as tree ensembles. Rigorous Bayesian nonparametric theorems are derived to guarantee the posterior consistency and asymptotic uncertainty of the proposed approach. Extensive simulation confirms that the proposed algorithm outperforms existing classic and recent variable selection methods.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Multiple hypothesis testing has been widely applied to problems dealing with high-dimensional data, e.g., selecting significant variables and controlling the selection error rate. The most prevailing measure of error rate used in the multiple hypothesis testing is the false discovery rate (FDR). In recent years, local false discovery rate (fdr) has drawn much attention, due to its advantage of accessing the confidence of individual hypothesis. However, most methods estimate fdr through p-values or statistics with known null distributions, which are sometimes not available or reliable. Adopting the innovative methodology of competition-based procedures, e.g., knockoff filter, this paper proposes a new approach, named TDfdr, to local false discovery rate estimation, which is free of the p-values or known null distributions. Simulation results demonstrate that TDfdr can accurately estimate the fdr with two competition-based procedures. In real data analysis, the power of TDfdr on variable selection is verified on two biological datasets.

In this paper, we use tools from rate-distortion theory to establish new upper bounds on the generalization error of statistical distributed learning algorithms. Specifically, there are $K$ clients whose individually chosen models are aggregated by a central server. The bounds depend on the compressibility of each client's algorithm while keeping other clients' algorithms un-compressed, and leverage the fact that small changes in each local model change the aggregated model by a factor of only $1/K$. Adopting a recently proposed approach by Sefidgaran et al., and extending it suitably to the distributed setting, this enables smaller rate-distortion terms which are shown to translate into tighter generalization bounds. The bounds are then applied to the distributed support vector machines (SVM), suggesting that the generalization error of the distributed setting decays faster than that of the centralized one with a factor of $\mathcal{O}(\log(K)/\sqrt{K})$. This finding is validated also experimentally. A similar conclusion is obtained for a multiple-round federated learning setup where each client uses stochastic gradient Langevin dynamics (SGLD).

The ability to accurately predict human behavior is central to the safety and efficiency of robot autonomy in interactive settings. Unfortunately, robots often lack access to key information on which these predictions may hinge, such as people's goals, attention, and willingness to cooperate. Dual control theory addresses this challenge by treating unknown parameters of a predictive model as stochastic hidden states and inferring their values at runtime using information gathered during system operation. While able to optimally and automatically trade off exploration and exploitation, dual control is computationally intractable for general interactive motion planning, mainly due to the fundamental coupling between robot trajectory optimization and human intent inference. In this paper, we present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm. Our approach relies on sampling-based approximation of stochastic dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods. The resulting policy is shown to preserve the dual control effect for a broad class of predictive human models with both continuous and categorical uncertainty. The efficacy of our approach is demonstrated with simulated driving examples.

Randomized smoothing is the dominant standard for provable defenses against adversarial examples. Nevertheless, this method has recently been proven to suffer from important information theoretic limitations. In this paper, we argue that these limitations are not intrinsic, but merely a byproduct of current certification methods. We first show that these certificates use too little information about the classifier, and are in particular blind to the local curvature of the decision boundary. This leads to severely sub-optimal robustness guarantees as the dimension of the problem increases. We then show that it is theoretically possible to bypass this issue by collecting more information about the classifier. More precisely, we show that it is possible to approximate the optimal certificate with arbitrary precision, by probing the decision boundary with several noise distributions. Since this process is executed at certification time rather than at test time, it entails no loss in natural accuracy while enhancing the quality of the certificates. This result fosters further research on classifier-specific certification and demonstrates that randomized smoothing is still worth investigating. Although classifier-specific certification may induce more computational cost, we also provide some theoretical insight on how to mitigate it.

This paper studies an intriguing phenomenon related to the good generalization performance of estimators obtained by using large learning rates within gradient descent algorithms. First observed in the deep learning literature, we show that a phenomenon can be precisely characterized in the context of kernel methods, even though the resulting optimization problem is convex. Specifically, we consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution on the Hessian's eigenvectors. This extends an intuition described by Nakkiran (2020) on a two-dimensional toy problem to realistic learning scenarios such as kernel ridge regression. While large learning rates may be proven beneficial as soon as there is a mismatch between the train and test objectives, we further explain why it already occurs in classification tasks without assuming any particular mismatch between train and test data distributions.

We introduce appropriate computable moduli of smoothness to characterize the rate of best approximation by multivariate polynomials on a connected and compact $C^2$-domain $\Omega\subset \mathbb{R}^d$. This new modulus of smoothness is defined via finite differences along the directions of coordinate axes, and along a number of tangential directions from the boundary. With this modulus, we prove both the direct Jackson inequality and the corresponding inverse for the best polynomial approximation in $L_p(\Omega)$. The Jackson inequality is established for the full range of $0<p\leq \infty$, while its proof relies on a recently established Whitney type estimates with constants depending only on certain parameters; and on a highly localized polynomial partitions of unity on a $C^2$-domain which is of independent interest. The inverse inequality is established for $1\leq p\leq \infty$, and its proof relies on a recently proved Bernstein type inequality associated with the tangential derivatives on the boundary of $\Omega$. Such an inequality also allows us to establish the inverse theorem for Ivanov's average moduli of smoothness on general compact $C^2$-domains.

In this paper we propose a solution strategy for the Cahn-Larch\'e equations, which is a model for linearized elasticity in a medium with two elastic phases that evolve subject to a Ginzburg-Landau type energy functional. The system can be seen as a combination of the Cahn-Hilliard regularized interface equation and linearized elasticity, and is non-linearly coupled, has a fourth order term that comes from the Cahn-Hilliard subsystem, and is non-convex and nonlinear in both the phase-field and displacement variables. We propose a novel semi-implicit discretization in time that uses a standard convex-concave splitting method of the nonlinear double-well potential, as well as special treatment to the elastic energy. We show that the resulting discrete system is equivalent to a convex minimization problem, and propose and prove the convergence of alternating minimization applied to it. Finally, we present numerical experiments that show the robustness and effectiveness of both alternating minimization and the monolithic Newton method applied to the newly proposed discrete system of equations. We compare it to a system of equations that has been discretized with a standard convex-concave splitting of the double-well potential, and implicit evaluations of the elasticity contributions and show that the newly proposed discrete system is better conditioned for linearization techniques.

We consider the problem of controlling an unknown linear dynamical system under adversarially changing convex costs and full feedback of both the state and cost function. We present the first computationally-efficient algorithm that attains an optimal $\smash{\sqrt{T}}$-regret rate compared to the best stabilizing linear controller in hindsight, while avoiding stringent assumptions on the costs such as strong convexity. Our approach is based on a careful design of non-convex lower confidence bounds for the online costs, and uses a novel technique for computationally-efficient regret minimization of these bounds that leverages their particular non-convex structure.

Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is sub-optimal when the sample size is comparable to or less than the number of features. Such high-dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high-dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g-modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA-seq experiment in mouse show that our approach is comparable to or can outperform a number of state-of-the-art proposals.

Hypothesis testing of random forest (RF) variable importance measures (VIMP) remains the subject of ongoing research. Among recent developments, heuristic approaches to parametric testing have been proposed whose distributional assumptions are based on empirical evidence. Other formal tests under regularity conditions were derived analytically. However, these approaches can be computationally expensive or even practically infeasible. This problem also occurs with non-parametric permutation tests, which are, however, distribution-free and can generically be applied to any type of RF and VIMP. Embracing this advantage, it is proposed here to use sequential permutation tests and sequential p-value estimation to reduce the high computational costs associated with conventional permutation tests. The popular and widely used permutation VIMP serves as a practical and relevant application example. The results of simulation studies confirm that the theoretical properties of the sequential tests apply, that is, the type-I error probability is controlled at a nominal level and a high power is maintained with considerably fewer permutations needed in comparison to conventional permutation testing. The numerical stability of the methods is investigated in two additional application studies. In summary, theoretically sound sequential permutation testing of VIMP is possible at greatly reduced computational costs. Recommendations for application are given. A respective implementation is provided through the accompanying R package $rfvimptest$. The approach can also be easily applied to any kind of prediction model.

北京阿比特科技有限公司