We study downlink channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in time-division duplex. The users must know their effective channel gains to decode their received downlink data. Previous works have used the mean value as the estimate, motivated by channel hardening. However, this is associated with a performance loss in non-isotropic scattering environments. We propose two novel estimation methods that can be applied without downlink pilots. The first method is model-based and asymptotic arguments are utilized to identify a connection between the effective channel gain and the average received power during a coherence block. This second method is data-driven and trains a neural network to identify a mapping between the available information and the effective channel gain. Both methods can be utilized for any channel distribution and precoding. For the model-aided method, we derive closed-form expressions when using maximum ratio or zero-forcing precoding. We compare the proposed methods with the state-of-the-art using the normalized mean-squared error and spectral efficiency (SE). The results suggest that the two proposed methods provide better SE than the state-of-the-art when there is a low level of channel hardening, while the performance difference is relatively small with the uncorrelated channel model.
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we advocate a novel protocol for the uplink communication in the IRS-assisted massive MIMO systems. Under this protocol, the IRS reflection coefficients are optimized based on the channel covariance matrices, which are generally fixed for many coherence blocks, to boost the long-term performance. Then, given the IRS reflecting coefficients, the BS beamforming vectors are designed in each coherence block based on the effective channel of each user, which is the superposition of its direct and reflected user-IRS-BS channels, to improve the instantaneous performance. Since merely the user effective channels are estimated in each coherence block, the training overhead of this protocol is the same as that in the legacy wireless systems without IRSs. Moreover, in the asymptotic regime that the numbers of IRS elements and BS antennas both go to infinity with a fixed ratio, we manage to first characterize the minimum mean-squared error (MMSE) estimators of the user effective channels and then quantify the closed-form user achievable rates as functions of channel covariance matrices with channel training overhead and estimation error taken into account. Interestingly, it is shown that the properties of channel hardening and favorable propagation still hold for the user effective channels, and satisfactory user rates are thus achievable even if simple BS beamforming solutions, e.g., maximal-ratio combining, are employed. Finally, thanks to the rate characterization, we design a low-complexity algorithm to optimize the IRS reflection coefficients based on channel covariance matrices.
We propose in this work to employ the Box-LASSO, a variation of the popular LASSO method, as a low-complexity decoder in a massive multiple-input multiple-output (MIMO) wireless communication system. The Box-LASSO is mainly useful for detecting simultaneously structured signals such as signals that are known to be sparse and bounded. One modulation technique that generates essentially sparse and bounded constellation points is the so-called generalized space-shift keying (GSSK) modulation. In this direction, we derive high dimensional sharp characterizations of various performance measures of the Box-LASSO such as the mean square error, probability of support recovery, and the element error rate, under independent and identically distributed (i.i.d.) Gaussian channels that are not perfectly known. In particular, the analytical characterizations can be used to demonstrate performance improvements of the Box-LASSO as compared to the widely used standard LASSO. Then, we can use these measures to optimally tune the involved hyper-parameters of Box-LASSO such as the regularization parameter. In addition, we derive optimum power allocation and training duration schemes in a training-based massive MIMO system. Monte Carlo simulations are used to validate these premises and to show the sharpness of the derived analytical results.
This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity.
In order to unlock the full advantages of massive multiple input multiple output (MIMO) in the downlink, channel state information (CSI) is required at the base station (BS) to optimize the beamforming matrices. In frequency division duplex (FDD) systems, full channel reciprocity does not hold, and CSI acquisition generally requires downlink pilot transmission followed by uplink feedback. Prior work proposed the end-to-end design of pilot transmission, feedback, and CSI estimation via deep learning. In this work, we introduce an enhanced end-to-end design that leverages partial uplink-downlink reciprocity and temporal correlation of the fading processes by utilizing jointly downlink and uplink pilots. The proposed method is based on a novel deep learning architecture -- HyperRNN -- that combines hypernetworks and recurrent neural networks (RNNs) to optimize the transfer of long-term channel features from uplink to downlink. Simulation results demonstrate that the HyperRNN achieves a lower normalized mean square error (NMSE) performance, and that it reduces requirements in terms of pilot lengths.
Massive multiple-input multiple-output (MIMO) and reconfigurable intelligent surface (RIS) are two promising technologies for 5G-and-beyond wireless networks, capable of providing large array gain and multiuser spatial multiplexing. Without requiring additional frequency bands, those technologies offer significant improvements in both spectral and energy efficiency by simultaneously serving many users. The performance analysis of an RIS-assisted Massive MIMO system as a function of the channel statistics relies heavily on fundamental properties including favorable propagation, channel hardening, and rank deficiency. The coexistence of both direct and indirect links results in aggregated channels, whose properties are the main concerns of this lecture note. For practical systems with a finite number of antennas and scattering elements of the RIS, we evaluate the corresponding deterministic metrics with Rayleigh fading channels as a typical example.
Heavy-tailed error distributions and predictors with anomalous values are ubiquitous in high-dimensional regression problems and can seriously jeopardize the validity of statistical analyses if not properly addressed. For more reliable estimation under these adverse conditions, we propose a new robust regularized estimator for simultaneous variable selection and coefficient estimation. This estimator, called adaptive PENSE, possesses the oracle property without prior knowledge of the scale of the residuals and without any moment conditions on the error distribution. The proposed estimator gives reliable results even under very heavy-tailed error distributions and aberrant contamination in the predictors or residuals. Importantly, even in these challenging settings variable selection by adaptive PENSE remains stable. Numerical studies on simulated and real data sets highlight superior finite-sample performance in a vast range of settings compared to other robust regularized estimators in the case of contaminated samples and competitiveness compared to classical regularized estimators in clean samples.
In this paper, we derive the information theoretic performance bounds on communication data rates and errors in parameter estimation, for a joint radar and communication (JRC) system. We assume that targets are semi-passive, i.e. they use active components for signal reception, and passive components to communicate their own information. Specifically, we let the targets to have control over their passive reflectors in order to transmit their own information back to the radar via reflection-based beamforming or backscattering. We derive the Cramer-Rao lower bounds (CRBs) for the mean squared error in the estimation of target parameters. The concept of a target ambiguity function (TAF) arises naturally in the derivation CRBs. Using these TAFs as cost function, we propose a waveform optimization technique based on calculus of variations. Further, we derive lower bounds on the data rates for communication on forward and reverse channels, in radar-only and joint radar and communications scenarios. Through numerical examples, we demonstrate the utility of this framework for transmit waveform design, codebook construction, and establishing the corresponding data rate bounds.
We revisit the $k$-Hessian eigenvalue problem on a smooth, bounded, $(k-1)$-convex domain in $\mathbb R^n$. First, we obtain a spectral characterization of the $k$-Hessian eigenvalue as the infimum of the first eigenvalues of linear second-order elliptic operators whose coefficients belong to the dual of the corresponding G\r{a}rding cone. Second, we introduce a non-degenerate inverse iterative scheme to solve the eigenvalue problem for the $k$-Hessian operator. We show that the scheme converges, with a rate, to the $k$-Hessian eigenvalue for all $k$. When $2\leq k\leq n$, we also prove a local $L^1$ convergence of the Hessian of solutions of the scheme. Hyperbolic polynomials play an important role in our analysis.
Click-through rate (CTR) estimation plays as a core function module in various personalized online services, including online advertising, recommender systems, and web search etc. From 2015, the success of deep learning started to benefit CTR estimation performance and now deep CTR models have been widely applied in many industrial platforms. In this survey, we provide a comprehensive review of deep learning models for CTR estimation tasks. First, we take a review of the transfer from shallow to deep CTR models and explain why going deep is a necessary trend of development. Second, we concentrate on explicit feature interaction learning modules of deep CTR models. Then, as an important perspective on large platforms with abundant user histories, deep behavior models are discussed. Moreover, the recently emerged automated methods for deep CTR architecture design are presented. Finally, we summarize the survey and discuss the future prospects of this field.
Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.