Much work on the cultural awareness of large language models (LLMs) focuses on the models' sensitivity to geo-cultural diversity. However, in addition to cross-cultural differences, there also exists common ground across cultures. For instance, a bridal veil in the United States plays a similar cultural-relevant role as a honggaitou in China. In this study, we introduce a benchmark dataset CUNIT for evaluating decoder-only LLMs in understanding the cultural unity of concepts. Specifically, CUNIT consists of 1,425 evaluation examples building upon 285 traditional cultural-specific concepts across 10 countries. Based on a systematic manual annotation of cultural-relevant features per concept, we calculate the cultural association between any pair of cross-cultural concepts. Built upon this dataset, we design a contrastive matching task to evaluate the LLMs' capability to identify highly associated cross-cultural concept pairs. We evaluate 3 strong LLMs, using 3 popular prompting strategies, under the settings of either giving all extracted concept features or no features at all on CUNIT Interestingly, we find that cultural associations across countries regarding clothing concepts largely differ from food. Our analysis shows that LLMs are still limited to capturing cross-cultural associations between concepts compared to humans. Moreover, geo-cultural proximity shows a weak influence on model performance in capturing cross-cultural associations.
We posit that large language models (LLMs) should be capable of expressing their intrinsic uncertainty in natural language. For example, if the LLM is equally likely to output two contradicting answers to the same question, then its generated response should reflect this uncertainty by hedging its answer (e.g., "I'm not sure, but I think..."). We formalize faithful response uncertainty based on the gap between the model's intrinsic confidence in the assertions it makes and the decisiveness by which they are conveyed. This example-level metric reliably indicates whether the model reflects its uncertainty, as it penalizes both excessive and insufficient hedging. We evaluate a variety of aligned LLMs at faithfully communicating uncertainty on several knowledge-intensive question answering tasks. Our results provide strong evidence that modern LLMs are poor at faithfully conveying their uncertainty, and that better alignment is necessary to improve their trustworthiness.
Large vision-language models (VLMs) have become state-of-the-art for many computer vision tasks, with in-context learning (ICL) as a popular adaptation strategy for new ones. But can VLMs learn novel concepts purely from visual demonstrations, or are they limited to adapting to the output format of ICL examples? We propose a new benchmark we call Spatial Visual Ambiguity Tasks (SVAT) that challenges state-of-the-art VLMs to learn new visuospatial tasks in-context. We find that VLMs fail to do this zero-shot, and sometimes continue to fail after finetuning. However, adding simpler data to the training by curriculum learning leads to improved ICL performance.
Large Language Models (LLMs) create exciting possibilities for powerful language processing tools to accelerate research in materials science. While LLMs have great potential to accelerate materials understanding and discovery, they currently fall short in being practical materials science tools. In this position paper, we show relevant failure cases of LLMs in materials science that reveal current limitations of LLMs related to comprehending and reasoning over complex, interconnected materials science knowledge. Given those shortcomings, we outline a framework for developing Materials Science LLMs (MatSci-LLMs) that are grounded in materials science knowledge and hypothesis generation followed by hypothesis testing. The path to attaining performant MatSci-LLMs rests in large part on building high-quality, multi-modal datasets sourced from scientific literature where various information extraction challenges persist. As such, we describe key materials science information extraction challenges which need to be overcome in order to build large-scale, multi-modal datasets that capture valuable materials science knowledge. Finally, we outline a roadmap for applying future MatSci-LLMs for real-world materials discovery via: 1. Automated Knowledge Base Generation; 2. Automated In-Silico Material Design; and 3. MatSci-LLM Integrated Self-Driving Materials Laboratories.
Diffusion-based recommender systems have recently proven to outperform traditional generative recommendation approaches, such as variational autoencoders and generative adversarial networks. Nevertheless, the machine learning literature has raised several concerns regarding the possibility that diffusion models, while learning the distribution of data samples, may inadvertently carry information bias and lead to unfair outcomes. In light of this aspect, and considering the relevance that fairness has held in recommendations over the last few decades, we conduct one of the first fairness investigations in the literature on DiffRec, a pioneer approach in diffusion-based recommendation. First, we propose an experimental setting involving DiffRec (and its variant L-DiffRec) along with nine state-of-the-art recommendation models, two popular recommendation datasets from the fairness-aware literature, and six metrics accounting for accuracy and consumer/provider fairness. Then, we perform a twofold analysis, one assessing models' performance under accuracy and recommendation fairness separately, and the other identifying if and to what extent such metrics can strike a performance trade-off. Experimental results from both studies confirm the initial unfairness warnings but pave the way for how to address them in future research directions.
Large language models (LLMs), despite their impressive performance in various language tasks, are typically limited to processing texts within context-window size. This limitation has spurred significant research efforts to enhance LLMs' long-context understanding with high-quality long-sequence benchmarks. However, prior datasets in this regard suffer from shortcomings, such as short context length compared to the context window of modern LLMs; outdated documents that have data leakage problems; and an emphasis on short dependency tasks rather than long dependency tasks. In this paper, we present LooGLE, a Long Context Generic Language Evaluation benchmark for LLMs' long context understanding. LooGLE features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains. Human annotators meticulously crafted more than 1,100 high-quality question-answer pairs to meet the long dependency requirements. These pairs underwent thorough cross-validation, yielding the most precise assessment of LLMs' long dependency capabilities. The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings: (i) commercial models outperformed open-sourced models; (ii) LLMs excelled in short dependency tasks like short question-answering and cloze tasks but struggled with more intricate long dependency tasks; (iii) in-context learning and chaining thoughts offered only marginal improvements; (iv) retrieval-based techniques demonstrated substantial benefits for short question-answering, while strategies for extending context window length had limited impact on long context understanding. As such, LooGLE not only provides a systematic and comprehensive evaluation schema on long-context LLMs, but also sheds light on future development of enhanced models towards "true long-context understanding".
The generalization ability of deepfake detectors is vital for their applications in real-world scenarios. One effective solution to enhance this ability is to train the models with manually-blended data, which we termed "blendfake", encouraging models to learn generic forgery artifacts like blending boundary. Interestingly, current SoTA methods utilize blendfake without incorporating any deepfake data in their training process. This is likely because previous empirical observations suggest that vanilla hybrid training (VHT), which combines deepfake and blendfake data, results in inferior performance to methods using only blendfake data (so-called "1+1<2"). Therefore, a critical question arises: Can we leave deepfake behind and rely solely on blendfake data to train an effective deepfake detector? Intuitively, as deepfakes also contain additional informative forgery clues (e.g., deep generative artifacts), excluding all deepfake data in training deepfake detectors seems counter-intuitive. In this paper, we rethink the role of blendfake in detecting deepfakes and formulate the process from "real to blendfake to deepfake" to be a progressive transition. Specifically, blendfake and deepfake can be explicitly delineated as the oriented pivot anchors between "real-to-fake" transitions. The accumulation of forgery information should be oriented and progressively increasing during this transition process. To this end, we propose an Oriented Progressive Regularizor (OPR) to establish the constraints that compel the distribution of anchors to be discretely arranged. Furthermore, we introduce feature bridging to facilitate the smooth transition between adjacent anchors. Extensive experiments confirm that our design allows leveraging forgery information from both blendfake and deepfake effectively and comprehensively.
Graph neural networks (GNNs) have excelled in predictive modeling for both crystals and molecules, owing to the expressiveness of graph representations. High-entropy alloys (HEAs), however, lack chemical long-range order, limiting the applicability of current graph representations. To overcome this challenge, we propose a representation of HEAs as a collection of local environment (LE) graphs. Based on this representation, we introduce the LESets machine learning model, an accurate, interpretable GNN for HEA property prediction. We demonstrate the accuracy of LESets in modeling the mechanical properties of quaternary HEAs. Through analyses and interpretation, we further extract insights into the modeling and design of HEAs. In a broader sense, LESets extends the potential applicability of GNNs to disordered materials with combinatorial complexity formed by diverse constituents and their flexible configurations.
Current text-to-speech algorithms produce realistic fakes of human voices, making deepfake detection a much-needed area of research. While researchers have presented various techniques for detecting audio spoofs, it is often unclear exactly why these architectures are successful: Preprocessing steps, hyperparameter settings, and the degree of fine-tuning are not consistent across related work. Which factors contribute to success, and which are accidental? In this work, we address this problem: We systematize audio spoofing detection by re-implementing and uniformly evaluating architectures from related work. We identify overarching features for successful audio deepfake detection, such as using cqtspec or logspec features instead of melspec features, which improves performance by 37% EER on average, all other factors constant. Additionally, we evaluate generalization capabilities: We collect and publish a new dataset consisting of 37.9 hours of found audio recordings of celebrities and politicians, of which 17.2 hours are deepfakes. We find that related work performs poorly on such real-world data (performance degradation of up to one thousand percent). This may suggest that the community has tailored its solutions too closely to the prevailing ASVSpoof benchmark and that deepfakes are much harder to detect outside the lab than previously thought.
How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a new paradigm in computational enumerative geometry in analyzing the $\psi$-class intersection numbers on the moduli space of curves. By formulating the enumerative problem as a continuous optimization task, we develop a Transformer-based model for computing $\psi$-class intersection numbers based on the underlying quantum Airy structure. For a finite range of genera, our model is capable of regressing intersection numbers that span an extremely wide range of values, from $10^{-45}$ to $10^{45}$. To provide a proper inductive bias for capturing the recursive behavior of intersection numbers, we propose a new activation function, Dynamic Range Activator (DRA). Moreover, given the severe heteroscedasticity of $\psi$-class intersections and the required precision, we quantify the uncertainty of the predictions using Conformal Prediction with a dynamic sliding window that is aware of the number of marked points. Next, we go beyond merely computing intersection numbers and explore the enumerative "world-model" of the Transformers. Through a series of causal inference and correlational interpretability analyses, we demonstrate that Transformers are actually modeling Virasoro constraints in a purely data-driven manner. Additionally, we provide evidence for the comprehension of several values appearing in the large genus asymptotic of $\psi$-class intersection numbers through abductive hypothesis testing.
We analyze the performance of large language models (LLMs) on Text Style Transfer (TST), specifically focusing on sentiment transfer and text detoxification across three languages: English, Hindi, and Bengali. Text Style Transfer involves modifying the linguistic style of a text while preserving its core content. We evaluate the capabilities of pre-trained LLMs using zero-shot and few-shot prompting as well as parameter-efficient finetuning on publicly available datasets. Our evaluation using automatic metrics, GPT-4 and human evaluations reveals that while some prompted LLMs perform well in English, their performance in on other languages (Hindi, Bengali) remains average. However, finetuning significantly improves results compared to zero-shot and few-shot prompting, making them comparable to previous state-of-the-art. This underscores the necessity of dedicated datasets and specialized models for effective TST.