Motivated by the problem of exploring discrete but very complex state spaces in Bayesian models, we propose a novel Markov Chain Monte Carlo search algorithm: the taxicab sampler. We describe the construction of this sampler and discuss how its interpretation and usage differs from that of standard Metropolis-Hastings as well as the closely-related Hamming ball sampler. The proposed taxicab sampling algorithm is then shown to demonstrate substantial improvement in computation time relative to a na\"ive Metropolis-Hastings search in a motivating Bayesian regression tree count model, in which we leverage the discrete state space assumption to construct a novel likelihood function that allows for flexibly describing different mean-variance relationships while preserving parameter interpretability compared to existing likelihood functions for count data.
A reciprocal LASSO (rLASSO) regularization employs a decreasing penalty function as opposed to conventional penalization approaches that use increasing penalties on the coefficients, leading to stronger parsimony and superior model selection relative to traditional shrinkage methods. Here we consider a fully Bayesian formulation of the rLASSO problem, which is based on the observation that the rLASSO estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters are assigned independent inverse Laplace priors. Bayesian inference from this posterior is possible using an expanded hierarchy motivated by a scale mixture of double Pareto or truncated normal distributions. On simulated and real datasets, we show that the Bayesian formulation outperforms its classical cousin in estimation, prediction, and variable selection across a wide range of scenarios while offering the advantage of posterior inference. Finally, we discuss other variants of this new approach and provide a unified framework for variable selection using flexible reciprocal penalties. All methods described in this paper are publicly available as an R package at: //github.com/himelmallick/BayesRecipe.
Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate considerably MCMC implementation of Bayesian space-time models, they do not solve the convergence problems caused by high model dimension. Frugal alternatives such as response or collapsed algorithms are an answer.gree Our approach is to keep full data augmentation but to try and make it more efficient. We present two strategies to do so. The first scheme is to pay a particular attention to the seemingly trivial fixed effects of the model. We show empirically that re-centering the latent field on the intercept critically improves chain behavior. We extend this approach to other fixed effects that may interfere with a coherent spatial field. We propose a simple method that requires no tuning while remaining affordable thanks to NNGP's sparsity. The second scheme accelerates the sampling of the random field using Chromatic samplers. This method makes long sequential simulation boil down to group-parallelized or group-vectorized sampling. The attractive possibility to parallelize NNGP likelihood can therefore be carried over to field sampling. We present a R implementation of our methods for Gaussian fields in the public repository //github.com/SebastienCoube/Improving_NNGP_full_augmentation . An extensive vignette is provided. We run our implementation on two synthetic toy examples along with the state of the art package spNNGP. Finally, we apply our method on a real data set of lead contamination in the United States of America mainland.
Discrete choice experiments are frequently used to quantify consumer preferences by having respondents choose between different alternatives. Choice experiments involving mixtures of ingredients have been largely overlooked in the literature, even though many products and services can be described as mixtures of ingredients. As a consequence, little research has been done on the optimal design of choice experiments involving mixtures. The only existing research has focused on D-optimal designs, which means that an estimation-based approach was adopted. However, in experiments with mixtures, it is crucial to obtain models that yield precise predictions for any combination of ingredient proportions. This is because the goal of mixture experiments generally is to find the mixture that optimizes the respondents' utility. As a result, the I-optimality criterion is more suitable for designing choice experiments with mixtures than the D-optimality criterion because the I-optimality criterion focuses on getting precise predictions with the estimated statistical model. In this paper, we study Bayesian I-optimal designs, compare them with their Bayesian D-optimal counterparts, and show that the former designs perform substantially better than the latter in terms of the variance of the predicted utility.
The identification of factors associated with mental and behavioral disorders in early childhood is critical both for psychopathology research and the support of primary health care practices. Motivated by the Millennium Cohort Study, in this paper we study the effect of a comprehensive set of covariates on children's emotional and behavioural trajectories in England. To this end, we develop a Quantile Mixed Hidden Markov Model for joint estimation of multiple quantiles in a linear regression setting for multivariate longitudinal data. The novelty of the proposed approach is based on the Multivariate Asymmetric Laplace distribution which allows to jointly estimate the quantiles of the univariate conditional distributions of a multivariate response, accounting for possible correlation between the outcomes. Sources of unobserved heterogeneity and serial dependency due to repeated measures are modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters evolving over time with a Markovian structure, respectively. The inferential approach is carried out through the construction of a suitable Expectation-Maximization algorithm without parametric assumptions on the random effects distribution.
In mathematical finance, Levy processes are widely used for their ability to model both continuous variation and abrupt, discontinuous jumps. These jumps are practically relevant, so reliable inference on the feature that controls jump frequencies and magnitudes, namely, the Levy density, is of critical importance. A specific obstacle to carrying out model-based (e.g., Bayesian) inference in such problems is that, for general Levy processes, the likelihood is intractable. To overcome this obstacle, here we adopt a Gibbs posterior framework that updates a prior distribution using a suitable loss function instead of a likelihood. We establish asymptotic posterior concentration rates for the proposed Gibbs posterior. In particular, in the most interesting and practically relevant case, we give conditions under which the Gibbs posterior concentrates at (nearly) the minimax optimal rate, adaptive to the unknown smoothness of the true Levy density.
A population-averaged additive subdistribution hazard model is proposed to assess the marginal effects of covariates on the cumulative incidence function to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazard model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is considered to estimate the regression coefficients and a sandwich variance estimator is proposed. The sandwich variance estimator accounts for both the correlations between failure times as well as the those between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazard for each covariate, as well as for the overall model. Simulation studies are carried out to investigate the performance of the proposed methods in finite samples; and we illustrate our methods by analyzing the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) study.
We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
Recurrent models for sequences have been recently successful at many tasks, especially for language modeling and machine translation. Nevertheless, it remains challenging to extract good representations from these models. For instance, even though language has a clear hierarchical structure going from characters through words to sentences, it is not apparent in current language models. We propose to improve the representation in sequence models by augmenting current approaches with an autoencoder that is forced to compress the sequence through an intermediate discrete latent space. In order to propagate gradients though this discrete representation we introduce an improved semantic hashing technique. We show that this technique performs well on a newly proposed quantitative efficiency measure. We also analyze latent codes produced by the model showing how they correspond to words and phrases. Finally, we present an application of the autoencoder-augmented model to generating diverse translations.