亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We suggest correlation coefficients together with rank - and moment based estimators which are simple to compute, have tractable asymptotic distributions, equal the maximum correlation for a class of bivariate Lancester distributions and in particular for the bivariate normal equal the absolute value of the Pearson correlation, while being only slightly smaller than maximum correlation for a variety of bivariate distributions. In a simulation the power of asymptotic as well as permutation tests for independence based on our correlation measures compares favorably to various competitors, including distance correlation and rank coefficients for functional dependence. Confidence intervals based on the asymptotic distributions and the covariance bootstrap show good finite-sample coverage.

相關內容

A Gaussian process (GP)-based methodology is proposed to emulate complex dynamical computer models (or simulators). The method relies on emulating the short-time numerical flow map of the system, where the flow map is a function that returns the solution of a dynamical system at a certain time point, given initial conditions. In order to predict the model output times series, a single realisation of the emulated flow map (i.e., its posterior distribution) is taken and used to iterate from the initial condition ahead in time. Repeating this procedure with multiple such draws creates a distribution over the time series whose mean and variance serve as the model output prediction and the associated uncertainty, respectively. However, since there is no known method to draw an exact sample from the GP posterior analytically, we approximate the kernel with random Fourier features and generate approximate sample paths. The proposed method is applied to emulate several dynamic nonlinear simulators including the well-known Lorenz and van der Pol models. The results suggest that our approach has a high predictive performance and the associated uncertainty can capture the dynamics of the system accurately. Additionally, our approach has potential for ``embarrassingly" parallel implementations where one can conduct the iterative predictions performed by a realisation on a single computing node.

Time series often reflect variation associated with other related variables. Controlling for the effect of these variables is useful when modeling or analysing the time series. We introduce a novel approach to normalize time series data conditional on a set of covariates. We do this by modeling the conditional mean and the conditional variance of the time series with generalized additive models using a set of covariates. The conditional mean and variance are then used to normalize the time series. We illustrate the use of conditionally normalized series using two applications involving river network data. First, we show how these normalized time series can be used to impute missing values in the data. Second, we show how the normalized series can be used to estimate the conditional autocorrelation function and conditional cross-correlation functions via additive models. Finally we use the conditional cross-correlations to estimate the time it takes water to flow between two locations in a river network.

Automated auction design aims to find empirically high-revenue mechanisms through machine learning. Existing works on multi item auction scenarios can be roughly divided into RegretNet-like and affine maximizer auctions (AMAs) approaches. However, the former cannot strictly ensure dominant strategy incentive compatibility (DSIC), while the latter faces scalability issue due to the large number of allocation candidates. To address these limitations, we propose AMenuNet, a scalable neural network that constructs the AMA parameters (even including the allocation menu) from bidder and item representations. AMenuNet is always DSIC and individually rational (IR) due to the properties of AMAs, and it enhances scalability by generating candidate allocations through a neural network. Additionally, AMenuNet is permutation equivariant, and its number of parameters is independent of auction scale. We conduct extensive experiments to demonstrate that AMenuNet outperforms strong baselines in both contextual and non-contextual multi-item auctions, scales well to larger auctions, generalizes well to different settings, and identifies useful deterministic allocations. Overall, our proposed approach offers an effective solution to automated DSIC auction design, with improved scalability and strong revenue performance in various settings.

Suppose that we have $n$ agents and $n$ items which lie in a shared metric space. We would like to match the agents to items such that the total distance from agents to their matched items is as small as possible. However, instead of having direct access to distances in the metric, we only have each agent's ranking of the items in order of distance. Given this limited information, what is the minimum possible worst-case approximation ratio (known as the distortion) that a matching mechanism can guarantee? Previous work by Caragiannis et al. proved that the (deterministic) Serial Dictatorship mechanism has distortion at most $2^n - 1$. We improve this by providing a simple deterministic mechanism that has distortion $O(n^2)$. We also provide the first nontrivial lower bound on this problem, showing that any matching mechanism (deterministic or randomized) must have worst-case distortion $\Omega(\log n)$. In addition to these new bounds, we show that a large class of truthful mechanisms derived from Deferred Acceptance all have worst-case distortion at least $2^n - 1$, and we find an intriguing connection between thin matchings (analogous to the well-known thin trees conjecture) and the distortion gap between deterministic and randomized mechanisms.

Generation of simulated detector response to collision products is crucial to data analysis in particle physics, but computationally very expensive. One subdetector, the calorimeter, dominates the computational time due to the high granularity of its cells and complexity of the interaction. Generative models can provide more rapid sample production, but currently require significant effort to optimize performance for specific detector geometries, often requiring many networks to describe the varying cell sizes and arrangements, which do not generalize to other geometries. We develop a {\it geometry-aware} autoregressive model, which learns how the calorimeter response varies with geometry, and is capable of generating simulated responses to unseen geometries without additional training. The geometry-aware model outperforms a baseline, unaware model by 50\% in metrics such as the Wasserstein distance between generated and true distributions of key quantities which summarize the simulated response. A single geometry-aware model could replace the hundreds of generative models currently designed for calorimeter simulation by physicists analyzing data collected at the Large Hadron Collider. For the study of future detectors, such a foundational model will be a crucial tool, dramatically reducing the large upfront investment usually needed to develop generative calorimeter models.

We study the problem of designing consistent sequential two-sample tests in a nonparametric setting. Guided by the principle of testing by betting, we reframe this task into that of selecting a sequence of payoff functions that maximize the wealth of a fictitious bettor, betting against the null in a repeated game. In this setting, the relative increase in the bettor's wealth has a precise interpretation as the measure of evidence against the null, and thus our sequential test rejects the null when the wealth crosses an appropriate threshold. We develop a general framework for setting up the betting game for two-sample testing, in which the payoffs are selected by a prediction strategy as data-driven predictable estimates of the witness function associated with the variational representation of some statistical distance measures, such as integral probability metrics (IPMs). We then formally relate the statistical properties of the test~(such as consistency, type-II error exponent and expected sample size) to the regret of the corresponding prediction strategy. We construct a practical sequential two-sample test by instantiating our general strategy with the kernel-MMD metric, and demonstrate its ability to adapt to the difficulty of the unknown alternative through theoretical and empirical results. Our framework is versatile, and easily extends to other problems; we illustrate this by applying our approach to construct consistent tests for the following problems: (i) time-varying two-sample testing with non-exchangeable observations, and (ii) an abstract class of "invariant" testing problems, including symmetry and independence testing.

The Tsallis $q$-Gaussian distribution is a powerful generalization of the standard Gaussian distribution and is commonly used in various fields, including non-extensive statistical mechanics, financial markets and image processing. It belongs to the $q$-distribution family, which is characterized by a non-additive entropy. Due to their versatility and practicality, $q$-Gaussians are a natural choice for modeling input quantities in measurement models. This paper presents the characteristic function of a linear combination of independent $q$-Gaussian random variables and proposes a numerical method for its inversion. The proposed technique makes it possible to determine the exact probability distribution of the output quantity in linear measurement models, with the input quantities modeled as independent $q$-Gaussian random variables. It provides an alternative computational procedure to the Monte Carlo method for uncertainty analysis through the propagation of distributions.

The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels -- Mat\'ern and squared exponential -- in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Mat\'ern case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.

We introduce an approach which allows inferring causal relationships between variables for which the time evolution is available. Our method builds on the ideas of Granger Causality and Transfer Entropy, but overcomes most of their limitations. Specifically, our approach tests whether the predictability of a putative driven system Y can be improved by incorporating information from a potential driver system X, without making assumptions on the underlying dynamics and without the need to compute probability densities of the dynamic variables. Causality is assessed by a rigorous variational scheme based on the Information Imbalance of distance ranks, a recently developed statistical test capable of inferring the relative information content of different distance measures. This framework makes causality detection possible even for high-dimensional systems where only few of the variables are known or measured. Benchmark tests on coupled dynamical systems demonstrate that our approach outperforms other model-free causality detection methods, successfully handling both unidirectional and bidirectional couplings, and it is capable of detecting the arrow of time when present. We also show that the method can be used to robustly detect causality in electroencephalography data in humans.

Matrix recovery from sparse observations is an extensively studied topic emerging in various applications, such as recommendation system and signal processing, which includes the matrix completion and compressed sensing models as special cases. In this work we propose a general framework for dynamic matrix recovery of low-rank matrices that evolve smoothly over time. We start from the setting that the observations are independent across time, then extend to the setting that both the design matrix and noise possess certain temporal correlation via modified concentration inequalities. By pooling neighboring observations, we obtain sharp estimation error bounds of both settings, showing the influence of the underlying smoothness, the dependence and effective samples. We propose a dynamic fast iterative shrinkage thresholding algorithm that is computationally efficient, and characterize the interplay between algorithmic and statistical convergence. Simulated and real data examples are provided to support such findings.

北京阿比特科技有限公司