亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Engaging with natural environments and representations of nature has been shown to improve mood states and reduce cognitive decline in older adults. The current study evaluated the use of virtual reality (VR) for presenting immersive 360 degree nature videos and a digitally designed interactive garden for this purpose. Fifty participants (age 60 plus), with varied cognitive and physical abilities, were recruited. Data were collected through pre/post-intervention surveys, standardized observations during the interventions, and post-intervention semi structured interviews. The results indicated significant improvements in attitudes toward VR and in some aspects of mood and engagement. The responses to the environment did not significantly differ among participants with different cognitive abilities; however, those with physical disabilities expressed stronger positive reactions on some metrics compared to participants without disabilities. Almost no negative impacts (cybersickness, task frustration) were found. In the interviews some participants expressed resistance to the technology, in particular the digital garden, indicating that it felt cartoonish or unappealing and that it could not substitute for real nature. However, the majority felt that the VR experiences could be a beneficial activity in situations when real-world contact with nature was not immediately feasible.

相關內容

Cognition:Cognition:International Journal of Cognitive Science Explanation:認知:國際認知科學雜志。 Publisher:Elsevier。 SIT:

Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI's potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration.

Our goal is to populate digital environments, in which digital humans have diverse body shapes, move perpetually, and have plausible body-scene contact. The core challenge is to generate realistic, controllable, and infinitely long motions for diverse 3D bodies. To this end, we propose generative motion primitives via body surface markers, or GAMMA in short. In our solution, we decompose the long-term motion into a time sequence of motion primitives. We exploit body surface markers and conditional variational autoencoder to model each motion primitive, and generate long-term motion by implementing the generative model recursively. To control the motion to reach a goal, we apply a policy network to explore the generative model's latent space and use a tree-based search to preserve the motion quality during testing. Experiments show that our method can produce more realistic and controllable motion than state-of-the-art data-driven methods. With conventional path-finding algorithms, the generated human bodies can realistically move long distances for a long period of time in the scene. Code is released for research purposes at: \url{//yz-cnsdqz.github.io/eigenmotion/GAMMA/}

Conditional behavior prediction (CBP) builds up the foundation for a coherent interactive prediction and planning framework that can enable more efficient and less conservative maneuvers in interactive scenarios. In CBP task, we train a prediction model approximating the posterior distribution of target agents' future trajectories conditioned on the future trajectory of an assigned ego agent. However, we argue that CBP may provide overly confident anticipation on how the autonomous agent may influence the target agents' behavior. Consequently, it is risky for the planner to query a CBP model. Instead, we should treat the planned trajectory as an intervention and let the model learn the trajectory distribution under intervention. We refer to it as the interventional behavior prediction (IBP) task. Moreover, to properly evaluate an IBP model with offline datasets, we propose a Shapley-value-based metric to testify if the prediction model satisfies the inherent temporal independence of an interventional distribution. We show that the proposed metric can effectively identify a CBP model violating the temporal independence, which plays an important role when establishing IBP benchmarks.

We can create Virtual Reality (VR) interactions that have no equivalent in the real world by remapping spacetime or altering users' body representation, such as stretching the user's virtual arm for manipulation of distant objects or scaling up the user's avatar to enable rapid locomotion. Prior research has leveraged such approaches, what we call beyond-real techniques, to make interactions in VR more practical, efficient, ergonomic, and accessible. We present a survey categorizing prior movement-based VR interaction literature as reality-based, illusory, or beyond-real interactions. We survey relevant conferences (CHI, IEEE VR, VRST, UIST, and DIS) while focusing on selection, manipulation, locomotion, and navigation in VR. For beyond-real interactions, we describe the transformations that have been used by prior works to create novel remappings. We discuss open research questions through the lens of the human sensorimotor control system and highlight challenges that need to be addressed for effective utilization of beyond-real interactions in future VR applications, including plausibility, control, long-term adaptation, and individual differences.

Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.

Monitoring students' engagement and understanding their learning pace in a virtual classroom becomes challenging in the absence of direct eye contact between the students and the instructor. Continuous monitoring of eye gaze and gaze gestures may produce inaccurate outcomes when the students are allowed to do productive multitasking, such as taking notes or browsing relevant content. This paper proposes Stungage - a software wrapper over existing online meeting platforms to monitor students' engagement in real-time by utilizing the facial video feeds from the students and the instructor coupled with a local on-device analysis of the presentation content. The crux of Stungage is to identify a few opportunistic moments when the students should visually focus on the presentation content if they can follow the lecture. We investigate these instances and analyze the students' visual, contextual, and cognitive presence to assess their engagement during the virtual classroom while not directly sharing the video captures of the participants and their screens over the web. Our system achieves an overall F2-score of 0.88 for detecting student engagement. Besides, we obtain 92 responses from the usability study with an average SU score of 74.18.

When subjected to a sudden, unanticipated threat, human groups characteristically self-organize to identify the threat, determine potential responses, and act to reduce its impact. Central to this process is the challenge of coordinating information sharing and response activity within a disrupted environment. In this paper, we consider coordination in the context of responses to the 2001 World Trade Center disaster. Using records of communications among 17 organizational units, we examine the mechanisms driving communication dynamics, with an emphasis on the emergence of coordinating roles. We employ relational event models (REMs) to identify the mechanisms shaping communications in each unit, finding a consistent pattern of behavior across units with very different characteristics. Using a simulation-based "knock-out" study, we also probe the importance of different mechanisms for hub formation. Our results suggest that, while preferential attachment and pre-disaster role structure generally contribute to the emergence of hub structure, temporally local conversational norms play a much larger role. We discuss broader implications for the role of microdynamics in driving macroscopic outcomes, and for the emergence of coordination in other settings.

This paper presents GoPose, a 3D skeleton-based human pose estimation system that uses WiFi devices at home. Our system leverages the WiFi signals reflected off the human body for 3D pose estimation. In contrast to prior systems that need specialized hardware or dedicated sensors, our system does not require a user to wear or carry any sensors and can reuse the WiFi devices that already exist in a home environment for mass adoption. To realize such a system, we leverage the 2D AoA spectrum of the signals reflected from the human body and the deep learning techniques. In particular, the 2D AoA spectrum is proposed to locate different parts of the human body as well as to enable environment-independent pose estimation. Deep learning is incorporated to model the complex relationship between the 2D AoA spectrums and the 3D skeletons of the human body for pose tracking. Our evaluation results show GoPose achieves around 4.7cm of accuracy under various scenarios including tracking unseen activities and under NLoS scenarios.

The ethical design of social Virtual Reality (VR) is not a new topic, but "safety" concerns of using social VR are escalated to a different level given the heat of the Metaverse. For example, it was reported that nearly half of the female-identifying VR participants have had at least one instance of virtual sexual harassment. Feeling safe is a basic human right - in any place, regardless in real or virtual spaces. In this paper, we are seeking to understand the discrepancy between user concerns and designs in protecting user safety in social VR applications. We study safety concerns on social VR experience first by analyzing Twitter posts and then synthesize practices on safety protection adopted by four mainstream social VR platforms. We argue that future research and platforms should explore the design of social VR with boundary-awareness.

The problem of scheduling unrelated machines has been studied since the inception of algorithmic mechanism design~\cite{NR99}. It is a resource allocation problem that entails assigning $m$ tasks to $n$ machines for execution. Machines are regarded as strategic agents who may lie about their execution costs so as to minimize their allocated workload. To address the situation when monetary payment is not an option to compensate the machines' costs, \citeauthor{DBLP:journals/mst/Koutsoupias14} [2014] devised two \textit{truthful} mechanisms, K and P respectively, that achieve an approximation ratio of $\frac{n+1}{2}$ and $n$, for social cost minimization. In addition, no truthful mechanism can achieve an approximation ratio better than $\frac{n+1}{2}$. Hence, mechanism K is optimal. While approximation ratio provides a strong worst-case guarantee, it also limits us to a comprehensive understanding of mechanism performance on various inputs. This paper investigates these two scheduling mechanisms beyond the worst case. We first show that mechanism K achieves a smaller social cost than mechanism P on every input. That is, mechanism K is pointwise better than mechanism P. Next, for each task $j$, when machines' execution costs $t_i^j$ are independent and identically drawn from a task-specific distribution $F^j(t)$, we show that the average-case approximation ratio of mechanism K converges to a constant. This bound is tight for mechanism K. For a better understanding of this distribution dependent constant, on the one hand, we estimate its value by plugging in a few common distributions; on the other, we show that this converging bound improves a known bound \cite{DBLP:conf/aaai/Zhang18} which only captures the single-task setting. Last, we find that the average-case approximation ratio of mechanism P converges to the same constant.

北京阿比特科技有限公司