亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The prediction of chemical reactions has gained significant interest within the machine learning community in recent years, owing to its complexity and crucial applications in chemistry. However, model evaluation for this task has been mostly limited to simple metrics like top-k accuracy, which obfuscates fine details of a model's limitations. Inspired by progress in other fields, we propose a new assessment scheme that builds on top of current approaches, steering towards a more holistic evaluation. We introduce the following key components for this goal: CHORISO, a curated dataset along with multiple tailored splits to recreate chemically relevant scenarios, and a collection of metrics that provide a holistic view of a model's advantages and limitations. Application of this method to state-of-the-art models reveals important differences on sensitive fronts, especially stereoselectivity and chemical out-of-distribution generalization. Our work paves the way towards robust prediction models that can ultimately accelerate chemical discovery.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Integration · MoDELS · · ·
2024 年 2 月 2 日

The matched case-control design, up until recently mostly pertinent to epidemiological studies, is becoming customary in biomedical applications as well. For instance, in omics studies, it is quite common to compare cancer and healthy tissue from the same patient. Furthermore, researchers today routinely collect data from various and variable sources that they wish to relate to the case-control status. This highlights the need to develop and implement statistical methods that can take these tendencies into account. We present an R package penalizedclr, that provides an implementation of the penalized conditional logistic regression model for analyzing matched case-control studies. It allows for different penalties for different blocks of covariates, and it is therefore particularly useful in the presence of multi-source omics data. Both L1 and L2 penalties are implemented. Additionally, the package implements stability selection for variable selection in the considered regression model. The proposed method fills a gap in the available software for fitting high-dimensional conditional logistic regression model accounting for the matched design and block structure of predictors/features. The output consists of a set of selected variables that are significantly associated with case-control status. These features can then be investigated in terms of functional interpretation or validation in further, more targeted studies.

In recent years, deep learning has gained increasing popularity in the fields of Partial Differential Equations (PDEs) and Reduced Order Modeling (ROM), providing domain practitioners with new powerful data-driven techniques such as Physics-Informed Neural Networks (PINNs), Neural Operators, Deep Operator Networks (DeepONets) and Deep-Learning based ROMs (DL-ROMs). In this context, deep autoencoders based on Convolutional Neural Networks (CNNs) have proven extremely effective, outperforming established techniques, such as the reduced basis method, when dealing with complex nonlinear problems. However, despite the empirical success of CNN-based autoencoders, there are only a few theoretical results supporting these architectures, usually stated in the form of universal approximation theorems. In particular, although the existing literature provides users with guidelines for designing convolutional autoencoders, the subsequent challenge of learning the latent features has been barely investigated. Furthermore, many practical questions remain unanswered, e.g., the number of snapshots needed for convergence or the neural network training strategy. In this work, using recent techniques from sparse high-dimensional function approximation, we fill some of these gaps by providing a new practical existence theorem for CNN-based autoencoders when the parameter-to-solution map is holomorphic. This regularity assumption arises in many relevant classes of parametric PDEs, such as the parametric diffusion equation, for which we discuss an explicit application of our general theory.

Granular flow problems characterized by large deformations are widespread in various applications, including coastal and geotechnical engineering. The paper deals with the application of a rigid-perfectly plastic two-phase model extended by the Drucker-Prager yield criterion to simulate granular media with a finite volume flow solver (FV). The model refers to the combination of a Bingham fluid and an Eulerian strain measure to assess the failure region of granular dam slides. A monolithic volume-of-fluid (VoF) method is used to distinguish between the air and granular phases, both governed by the incompressible Navier-Stokes equations. The numerical framework enables modeling of large displacements and arbitrary shapes for large-scale applications. The displayed validation and verification focuses on the rigid-perfectly plastic material model for non-cohesive and cohesive materials with varying angles of repose. Results indicate a good agreement of the predicted soil surface and strain results with experimental and numerical data.

We present a monolithic finite element formulation for (nonlinear) fluid-structure interaction in Eulerian coordinates. For the discretization we employ an unfitted finite element method based on inf-sup stable finite elements. So-called ghost penalty terms are used to guarantee the robustness of the approach independently of the way the interface cuts the finite element mesh. The resulting system is solved in a monolithic fashion using Newton's method. Our developments are tested on a numerical example with fixed interface.

Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling of these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. In longitudinal health studies, information on many demographic, behavioural, biological, and clinical covariates may be available, among which some might cause heterogeneous treatment effects. A data-driven approach for selecting the effect modifiers of an exposure may be necessary if these effect modifiers are \textit{a priori} unknown and need to be identified. Although variable selection techniques are available in the context of estimating conditional average treatment effects using marginal structural models, or in the context of estimating optimal dynamic treatment regimens, all of these methods consider an outcome measured at a single point in time. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and prove the oracle property of our estimator. We conduct a simulation study to evaluate the performance of the proposed estimator in finite samples and for verification of its double-robustness property. Our work is motivated by a study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Universit\'e de Montr\'eal.

Using validated numerical methods, interval arithmetic and Taylor models, we propose a certified predictor-corrector loop for tracking zeros of polynomial systems with a parameter. We provide a Rust implementation which shows tremendous improvement over existing software for certified path tracking.

We present a complete numerical analysis for a general discretization of a coupled flow-mechanics model in fractured porous media, considering single-phase flows and including frictionless contact at matrix-fracture interfaces, as well as nonlinear poromechanical coupling. Fractures are described as planar surfaces, yielding the so-called mixed- or hybrid-dimensional models. Small displacements and a linear elastic behavior are considered for the matrix. The model accounts for discontinuous fluid pressures at matrix-fracture interfaces in order to cover a wide range of normal fracture conductivities. The numerical analysis is carried out in the Gradient Discretization framework, encompassing a large family of conforming and nonconforming discretizations. The convergence result also yields, as a by-product, the existence of a weak solution to the continuous model. A numerical experiment in 2D is presented to support the obtained result, employing a Hybrid Finite Volume scheme for the flow and second-order finite elements ($\mathbb P_2$) for the mechanical displacement coupled with face-wise constant ($\mathbb P_0$) Lagrange multipliers on fractures, representing normal stresses, to discretize the contact conditions.

Environmental data science for spatial extremes has traditionally relied heavily on max-stable processes. Even though the popularity of these models has perhaps peaked with statisticians, they are still perceived and considered as the `state-of-the-art' in many applied fields. However, while the asymptotic theory supporting the use of max-stable processes is mathematically rigorous and comprehensive, we think that it has also been overused, if not misused, in environmental applications, to the detriment of more purposeful and meticulously validated models. In this paper, we review the main limitations of max-stable process models, and strongly argue against their systematic use in environmental studies. Alternative solutions based on more flexible frameworks using the exceedances of variables above appropriately chosen high thresholds are discussed, and an outlook on future research is given, highlighting recommendations moving forward and the opportunities offered by hybridizing machine learning with extreme-value statistics.

In this work we demonstrate that SVD-based model reduction techniques known for ordinary differential equations, such as the proper orthogonal decomposition, can be extended to stochastic differential equations in order to reduce the computational cost arising from both the high dimension of the considered stochastic system and the large number of independent Monte Carlo runs. We also extend the proper symplectic decomposition method to stochastic Hamiltonian systems, both with and without external forcing, and argue that preserving the underlying symplectic or variational structures results in more accurate and stable solutions that conserve energy better than when the non-geometric approach is used. We validate our proposed techniques with numerical experiments for a semi-discretization of the stochastic nonlinear Schr\"odinger equation and the Kubo oscillator.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

北京阿比特科技有限公司