亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In emergencies, high stake decisions often have to be made under time pressure and strain. In order to support such decisions, information from various sources needs to be collected and processed rapidly. The information available tends to be temporally and spatially variable, uncertain, and sometimes conflicting, leading to potential biases in decisions. Currently, there is a lack of systematic approaches for information processing and situation assessment which meet the particular demands of emergency situations. To address this gap, we present a Bayesian network-based method called ERIMap that is tailored to the complex information-scape during emergencies. The method enables the systematic and rapid processing of heterogeneous and potentially uncertain observations and draws inferences about key variables of an emergency. It thereby reduces complexity and cognitive load for decision makers. The output of the ERIMap method is a dynamically evolving and spatially resolved map of beliefs about key variables of an emergency that is updated each time a new observation becomes available. The method is illustrated in a case study in which an emergency response is triggered by an accident causing a gas leakage on a chemical plant site.

相關內容

Processing 是一門開源編(bian)(bian)程(cheng)語言和(he)(he)與之配(pei)套的(de)集成開發環境(IDE)的(de)名稱(cheng)。Processing 在(zai)電(dian)子(zi)藝術和(he)(he)視覺(jue)設(she)計社區被用(yong)來教授編(bian)(bian)程(cheng)基礎,并(bing)運用(yong)于(yu)大量的(de)新媒體和(he)(he)互(hu)動藝術作品中。

This article utilizes the inspiration to apply the Wyel operators for producing the Kraus operators, which are crucial in the discrete-time open quantum walk. It assists us in extending the idea of discrete-time open quantum walk on arbitrary directed and undirected graphs. We make the new model of quantum walk useful to build up a quantum PageRank algorithm. In classical computation, Google's PageRank is a significant algorithm for arranging web pages on the World Wide Web. In general, it is also a fundamental measure for quantifying the importance of vertices in a network. Similarly, the new quantum PageRank also represents the importance of the vertices of a network. We can compute the new quantum PageRank algorithm in polynomial time using a classical computer. We compare the classical PageRank and the newly defined quantum PageRank for different types of complex networks, such as the scale-free network, Erdos-Renyi random network, Watts-Strogatz network, spatial network, Zachary Karate club network, random-k-out graph, binary tree graph, GNC network, Barabasi and Albert network, etc.

To achieve strong real world performance, neural networks must be trained on large, diverse datasets; however, obtaining and annotating such datasets is costly and time-consuming, particularly for 3D point clouds. In this paper, we describe Paved2Paradise, a simple, cost-effective approach for generating fully labeled, diverse, and realistic lidar datasets from scratch, all while requiring minimal human annotation. Our key insight is that, by deliberately collecting separate "background" and "object" datasets (i.e., "factoring the real world"), we can intelligently combine them to produce a combinatorially large and diverse training set. The Paved2Paradise pipeline thus consists of four steps: (1) collecting copious background data, (2) recording individuals from the desired object class(es) performing different behaviors in an isolated environment (like a parking lot), (3) bootstrapping labels for the object dataset, and (4) generating samples by placing objects at arbitrary locations in backgrounds. To demonstrate the utility of Paved2Paradise, we generated synthetic datasets for two tasks: (1) human detection in orchards (a task for which no public data exists) and (2) pedestrian detection in urban environments. Qualitatively, we find that a model trained exclusively on Paved2Paradise synthetic data is highly effective at detecting humans in orchards, including when individuals are heavily occluded by tree branches. Quantitatively, a model trained on Paved2Paradise data that sources backgrounds from KITTI performs comparably to a model trained on the actual dataset. These results suggest the Paved2Paradise synthetic data pipeline can help accelerate point cloud model development in sectors where acquiring lidar datasets has previously been cost-prohibitive.

Recent advancements in artificial intelligence have propelled the capabilities of Large Language Models, yet their ability to mimic nuanced human reasoning remains limited. This paper introduces a novel conceptual enhancement to LLMs, termed the Artificial Neuron, designed to significantly bolster cognitive processing by integrating external memory systems. This enhancement mimics neurobiological processes, facilitating advanced reasoning and learning through a dynamic feedback loop mechanism. We propose a unique framework wherein each LLM interaction specifically in solving complex math word problems and common sense reasoning tasks is recorded and analyzed. Incorrect responses are refined using a higher capacity LLM or human in the loop corrections, and both the query and the enhanced response are stored in a vector database, structured much like neuronal synaptic connections. This Artificial Neuron thus serves as an external memory aid, allowing the LLM to reference past interactions and apply learned reasoning strategies to new problems. Our experimental setup involves training with the GSM8K dataset for initial model response generation, followed by systematic refinements through feedback loops. Subsequent testing demonstrated a significant improvement in accuracy and efficiency, underscoring the potential of external memory systems to advance LLMs beyond current limitations. This approach not only enhances the LLM's problem solving precision but also reduces computational redundancy, paving the way for more sophisticated applications of artificial intelligence in cognitive tasks. This paper details the methodology, implementation, and implications of the Artificial Neuron model, offering a transformative perspective on enhancing machine intelligence.

Restart policy is an important technique used in modern Conflict-Driven Clause Learning (CDCL) solvers, wherein some parts of the solver state are erased at certain intervals during the run of the solver. In most solvers, variable activities are preserved across restart boundaries, resulting in solvers continuing to search parts of the assignment tree that are not far from the one immediately prior to a restart. To enable the solver to search possibly "distant" parts of the assignment tree, we study the effect of resets, a variant of restarts which not only erases the assignment trail, but also randomizes the activity scores of the variables of the input formula after reset, thus potentially enabling a better global exploration of the search space. In this paper, we model the problem of whether to trigger reset as a multi-armed bandit (MAB) problem, and propose two reinforcement learning (RL) based adaptive reset policies using the Upper Confidence Bound (UCB) and Thompson sampling algorithms. These two algorithms balance the exploration-exploitation tradeoff by adaptively choosing arms (reset vs. no reset) based on their estimated rewards during the solver's run. We implement our reset policies in four baseline SOTA CDCL solvers and compare the baselines against the reset versions on Satcoin benchmarks and SAT Competition instances. Our results show that RL-based reset versions outperform the corresponding baseline solvers on both Satcoin and the SAT competition instances, suggesting that our RL policy helps to dynamically and profitably adapt the reset frequency for any given input instance. We also introduce the concept of a partial reset, where at least a constant number of variable activities are retained across reset boundaries. Building on previous results, we show that there is an exponential separation between O(1) vs. $\Omega(n)$-length partial resets.

Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR), where both prompt-based and fine-tuning-based methods have been widely investigated to align LLMs with SBR. However, the former methods struggle with optimal prompts to elicit the correct reasoning of LLMs due to the lack of task-specific feedback, leading to unsatisfactory recommendations. Although the latter methods attempt to fine-tune LLMs with domain-specific knowledge, they face limitations such as high computational costs and reliance on open-source backbones. To address such issues, we propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations effectively and efficiently. In particular, we first design the Reflective Exploration Module to effectively extract knowledge that is readily understandable and digestible by LLMs. To be specific, we direct LLMs to examine recommendation errors through self-reflection and construct a knowledge base (KB) comprising hints capable of rectifying these errors. To efficiently elicit the correct reasoning of LLMs, we further devise the Reinforcement Utilization Module to train a lightweight retrieval agent. It learns to select hints from the constructed KB based on the task-specific feedback, where the hints can serve as guidance to help correct LLMs reasoning for better recommendations. Extensive experiments on multiple real-world datasets demonstrate that our method consistently outperforms state-of-the-art methods.

Although Split Federated Learning (SFL) is good at enabling knowledge sharing among resource-constrained clients, it suffers from the problem of low training accuracy due to the neglect of data heterogeneity and catastrophic forgetting. To address this issue, we propose a novel SFL approach named KoReA-SFL, which adopts a multi-model aggregation mechanism to alleviate gradient divergence caused by heterogeneous data and a knowledge replay strategy to deal with catastrophic forgetting. Specifically, in KoReA-SFL cloud servers (i.e., fed server and main server) maintain multiple branch model portions rather than a global portion for local training and an aggregated master-model portion for knowledge sharing among branch portions. To avoid catastrophic forgetting, the main server of KoReA-SFL selects multiple assistant devices for knowledge replay according to the training data distribution of each server-side branch-model portion. Experimental results obtained from non-IID and IID scenarios demonstrate that KoReA-SFL significantly outperforms conventional SFL methods (by up to 23.25\% test accuracy improvement).

In recent years, modern techniques in deep learning and large-scale datasets have led to impressive progress in 3D instance segmentation, grasp pose estimation, and robotics. This allows for accurate detection directly in 3D scenes, object- and environment-aware grasp prediction, as well as robust and repeatable robotic manipulation. This work aims to integrate these recent methods into a comprehensive framework for robotic interaction and manipulation in human-centric environments. Specifically, we leverage 3D reconstructions from a commodity 3D scanner for open-vocabulary instance segmentation, alongside grasp pose estimation, to demonstrate dynamic picking of objects, and opening of drawers. We show the performance and robustness of our model in two sets of real-world experiments including dynamic object retrieval and drawer opening, reporting a 51% and 82% success rate respectively. Code of our framework as well as videos are available on: //spot-compose.github.io/.

Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Pre-training techniques have been verified successfully in a variety of NLP tasks in recent years. Despite the widespread of pre-training models for NLP applications, they almost focused on text-level manipulation, while neglecting the layout and style information that is vital for document image understanding. In this paper, we propose the LayoutLM to jointly model the interaction between text and layout information across scanned document images, which is beneficial for a great number of real-world document image understanding tasks such as information extraction from scanned documents. Furthermore, we also leverage the image features to incorporate the visual information of words into LayoutLM. To the best of our knowledge, this is the first time that text and layout are jointly learned in a single framework for document-level pre-training. It achieves new state-of-the-art results in several downstream tasks, including form understanding (from 70.72 to 79.27), receipt understanding (from 94.02 to 95.24) and document image classification (from 93.07 to 94.42). The code and pre-trained LayoutLM models are publicly available at //github.com/microsoft/unilm/tree/master/layoutlm.

北京阿比特科技有限公司