亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Maps have played an indispensable role in enabling safe and automated driving. Although there have been many advances on different fronts ranging from SLAM to semantics, building an actionable hierarchical semantic representation of urban dynamic scenes and processing information from multiple agents are still challenging problems. In this work, we present Collaborative URBan Scene Graphs (CURB-SG) that enable higher-order reasoning and efficient querying for many functions of automated driving. CURB-SG leverages panoptic LiDAR data from multiple agents to build large-scale maps using an effective graph-based collaborative SLAM approach that detects inter-agent loop closures. To semantically decompose the obtained 3D map, we build a lane graph from the paths of ego agents and their panoptic observations of other vehicles. Based on the connectivity of the lane graph, we segregate the environment into intersecting and non-intersecting road areas. Subsequently, we construct a multi-layered scene graph that includes lane information, the position of static landmarks and their assignment to certain map sections, other vehicles observed by the ego agents, and the pose graph from SLAM including 3D panoptic point clouds. We extensively evaluate CURB-SG in urban scenarios using a photorealistic simulator. We release our code at //curb.cs.uni-freiburg.de.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Generalization error bounds are essential for comprehending how well machine learning models work. In this work, we suggest a novel method, i.e., the Auxiliary Distribution Method, that leads to new upper bounds on expected generalization errors that are appropriate for supervised learning scenarios. We show that our general upper bounds can be specialized under some conditions to new bounds involving the $\alpha$-Jensen-Shannon, $\alpha$-R\'enyi ($0< \alpha < 1$) information between a random variable modeling the set of training samples and another random variable modeling the set of hypotheses. Our upper bounds based on $\alpha$-Jensen-Shannon information are also finite. Additionally, we demonstrate how our auxiliary distribution method can be used to derive the upper bounds on excess risk of some learning algorithms in the supervised learning context {\blue and the generalization error under the distribution mismatch scenario in supervised learning algorithms, where the distribution mismatch is modeled as $\alpha$-Jensen-Shannon or $\alpha$-R\'enyi divergence between the distribution of test and training data samples distributions.} We also outline the conditions for which our proposed upper bounds might be tighter than other earlier upper bounds.

Tactile sensing presents a promising opportunity for enhancing the interaction capabilities of today's robots. BioTac is a commonly used tactile sensor that enables robots to perceive and respond to physical tactile stimuli. However, the sensor's non-linearity poses challenges in simulating its behavior. In this paper, we first investigate a BioTac simulation that uses temperature, force, and contact point positions to predict the sensor outputs. We show that training with BioTac temperature readings does not yield accurate sensor output predictions during deployment. Consequently, we tested three alternative models, i.e., an XGBoost regressor, a neural network, and a transformer encoder. We train these models without temperature readings and provide a detailed investigation of the window size of the input vectors. We demonstrate that we achieve statistically significant improvements over the baseline network. Furthermore, our results reveal that the XGBoost regressor and transformer outperform traditional feed-forward neural networks in this task. We make all our code and results available online on //github.com/wzaielamri/Optimizing_BioTac_Simulation.

Elo rating systems measure the approximate skill of each competitor in a game or sport. A competitor's rating increases when they win and decreases when they lose. Increasing one's rating can be difficult work; one must hone their skills and consistently beat the competition. Alternatively, with enough money you can rig the outcome of games to boost your rating. This paper poses a natural question for Elo rating systems: say you manage to get together $n$ people (including yourself) and acquire enough money to rig $k$ games. How high can you get your rating, asymptotically in $k$? In this setting, the people you gathered aren't very interested in the game, and will only play if you pay them to. This paper resolves the question for $n=2$ up to constant additive error, and provide close upper and lower bounds for all other $n$, including for $n$ growing arbitrarily with $k$. There is a phase transition at $n=k^{1/3}$: there is a huge increase in the highest possible Elo rating from $n=2$ to $n=k^{1/3}$, but (depending on the particular Elo system used) little-to-no increase for any higher $n$. Past the transition point $n>k^{1/3}$, the highest possible Elo is at least $\Theta(k^{1/3})$. The corresponding upper bound depends on the particular system used, but for the standard Elo system, is $\Theta(k^{1/3}\log(k)^{1/3})$.

Detecting dialogue breakdown in real time is critical for conversational AI systems, because it enables taking corrective action to successfully complete a task. In spoken dialog systems, this breakdown can be caused by a variety of unexpected situations including high levels of background noise, causing STT mistranscriptions, or unexpected user flows. In particular, industry settings like healthcare, require high precision and high flexibility to navigate differently based on the conversation history and dialogue states. This makes it both more challenging and more critical to accurately detect dialog breakdown. To accurately detect breakdown, we found it requires processing audio inputs along with downstream NLP model inferences on transcribed text in real time. In this paper, we introduce a Multimodal Contextual Dialogue Breakdown (MultConDB) model. This model significantly outperforms other known best models by achieving an F1 of 69.27.

Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence. The state-of-the-art approaches for ACD use Deep Neural Networks (DNNs) to address the problem as a multi-label classification task. However, learning category-specific representations heavily rely on the amount of labeled examples, which may not readily available in real-world scenarios. In this paper, we propose a novel approach to tackle the ACD task by combining DNNs with Gradual Machine Learning (GML) in a supervised setting. we aim to leverage the strength of DNN in semantic relation modeling, which can facilitate effective knowledge transfer between labeled and unlabeled instances during the gradual inference of GML. To achieve this, we first analyze the learned latent space of the DNN to model the relations, i.e., similar or opposite, between instances. We then represent these relations as binary features in a factor graph to efficiently convey knowledge. Finally, we conduct a comparative study of our proposed solution on real benchmark datasets and demonstrate that the GML approach, in collaboration with DNNs for feature extraction, consistently outperforms pure DNN solutions.

Current Deep Neural Networks are vulnerable to adversarial examples, which alter their predictions by adding carefully crafted noise. Since human eyes are robust to such inputs, it is possible that the vulnerability stems from the standard way of processing inputs in one shot by processing every pixel with the same importance. In contrast, neuroscience suggests that the human vision system can differentiate salient features by (1) switching between multiple fixation points (saccades) and (2) processing the surrounding with a non-uniform external resolution (foveation). In this work, we advocate that the integration of such active vision mechanisms into current deep learning systems can offer robustness benefits. Specifically, we empirically demonstrate the inherent robustness of two active vision methods - GFNet and FALcon - under a black box threat model. By learning and inferencing based on downsampled glimpses obtained from multiple distinct fixation points within an input, we show that these active methods achieve (2-3) times greater robustness compared to a standard passive convolutional network under state-of-the-art adversarial attacks. More importantly, we provide illustrative and interpretable visualization analysis that demonstrates how performing inference from distinct fixation points makes active vision methods less vulnerable to malicious inputs.

Security vulnerability repair is a difficult task that is in dire need of automation. Two groups of techniques have shown promise: (1) large code language models (LLMs) that have been pre-trained on source code for tasks such as code completion, and (2) automated program repair (APR) techniques that use deep learning (DL) models to automatically fix software bugs. This paper is the first to study and compare Java vulnerability repair capabilities of LLMs and DL-based APR models. The contributions include that we (1) apply and evaluate five LLMs (Codex, CodeGen, CodeT5, PLBART and InCoder), four fine-tuned LLMs, and four DL-based APR techniques on two real-world Java vulnerability benchmarks (Vul4J and VJBench), (2) design code transformations to address the training and test data overlapping threat to Codex, (3) create a new Java vulnerability repair benchmark VJBench, and its transformed version VJBench-trans and (4) evaluate LLMs and APR techniques on the transformed vulnerabilities in VJBench-trans. Our findings include that (1) existing LLMs and APR models fix very few Java vulnerabilities. Codex fixes 10.2 (20.4%), the most number of vulnerabilities. (2) Fine-tuning with general APR data improves LLMs' vulnerability-fixing capabilities. (3) Our new VJBench reveals that LLMs and APR models fail to fix many Common Weakness Enumeration (CWE) types, such as CWE-325 Missing cryptographic step and CWE-444 HTTP request smuggling. (4) Codex still fixes 8.3 transformed vulnerabilities, outperforming all the other LLMs and APR models on transformed vulnerabilities. The results call for innovations to enhance automated Java vulnerability repair such as creating larger vulnerability repair training data, tuning LLMs with such data, and applying code simplification transformation to facilitate vulnerability repair.

Visually evaluating the goodness of generated Multivariate Time Series (MTS) are difficult to implement, especially in the case that the generative model is Generative Adversarial Networks (GANs). We present a general framework named Gaussian GANs to visually evaluate GANs using itself under the MTS generation task. Firstly, we attempt to find the transformation function in the multivariate Kolmogorov Smirnov (MKS) test by explicitly reconstructing the architecture of GANs. Secondly, we conduct the normality test of transformed MST where the Gaussian GANs serves as the transformation function in the MKS test. In order to simplify the normality test, an efficient visualization is proposed using the chi square distribution. In the experiment, we use the UniMiB dataset and provide empirical evidence showing that the normality test using Gaussian GANs and chi sqaure visualization is effective and credible.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

北京阿比特科技有限公司