The recent O-RAN specifications promote the evolution of RAN architecture by function disaggregation, adoption of open interfaces, and instantiation of a hierarchical closed-loop control architecture managed by RAN Intelligent Controllers (RICs) entities. This paves the road to novel data-driven network management approaches based on programmable logic. Aided by Artificial Intelligence (AI) and Machine Learning (ML), novel solutions targeting traditionally unsolved RAN management issues can be devised. Nevertheless, the adoption of such smart and autonomous systems is limited by the current inability of human operators to understand the decision process of such AI/ML solutions, affecting their trust in such novel tools. eXplainable AI (XAI) aims at solving this issue, enabling human users to better understand and effectively manage the emerging generation of artificially intelligent schemes, reducing the human-to-machine barrier. In this survey, we provide a summary of the XAI methods and metrics before studying their deployment over the O-RAN Alliance RAN architecture along with its main building blocks. We then present various use-cases and discuss the automation of XAI pipelines for O-RAN as well as the underlying security aspects. We also review some projects/standards that tackle this area. Finally, we identify different challenges and research directions that may arise from the heavy adoption of AI/ML decision entities in this context, focusing on how XAI can help to interpret, understand, and improve trust in O-RAN operational networks.
To simplify the generation process, several text-to-speech (TTS) systems implicitly learn intermediate latent representations instead of relying on predefined features (e.g., mel-spectrogram). However, their generation quality is unsatisfactory as these representations lack speech variances. In this paper, we improve TTS performance by adding \emph{prosody embeddings} to the latent representations. During training, we extract reference prosody embeddings from mel-spectrograms, and during inference, we estimate these embeddings from text using generative adversarial networks (GANs). Using GANs, we reliably estimate the prosody embeddings in a fast way, which have complex distributions due to the dynamic nature of speech. We also show that the prosody embeddings work as efficient features for learning a robust alignment between text and acoustic features. Our proposed model surpasses several publicly available models with less parameters and computational complexity in comparative experiments.
Generative pre-trained transformer (GPT) models have revolutionized the field of natural language processing (NLP) with remarkable performance in various tasks and also extend their power to multimodal domains. Despite their success, large GPT models like GPT-4 face inherent limitations such as considerable size, high computational requirements, complex deployment processes, and closed development loops. These constraints restrict their widespread adoption and raise concerns regarding their responsible development and usage. The need for user-friendly, relatively small, and open-sourced alternative GPT models arises from the desire to overcome these limitations while retaining high performance. In this survey paper, we provide an examination of alternative open-sourced models of large GPTs, focusing on user-friendly and relatively small models that facilitate easier deployment and accessibility. Through this extensive survey, we aim to equip researchers, practitioners, and enthusiasts with a thorough understanding of user-friendly and relatively small open-sourced models of large GPTs, their current state, challenges, and future research directions, inspiring the development of more efficient, accessible, and versatile GPT models that cater to the broader scientific community and advance the field of general artificial intelligence. The source contents are continuously updating in //github.com/GPT-Alternatives/gpt_alternatives.
We present a general central limit theorem with simple, easy-to-check covariance-based sufficient conditions for triangular arrays of random vectors when all variables could be interdependent. The result is constructed from Stein's method, but the conditions are distinct from related work. We show that these covariance conditions nest standard assumptions studied in the literature such as $M$-dependence, mixing random fields, non-mixing autoregressive processes, and dependency graphs, which themselves need not imply each other. This permits researchers to work with high-level but intuitive conditions based on overall correlation instead of more complicated and restrictive conditions such as strong mixing in random fields that may not have any obvious micro-foundation. As examples of the implications, we show how the theorem implies asymptotic normality in estimating: treatment effects with spillovers in more settings than previously admitted, covariance matrices, processes with global dependencies such as epidemic spread and information diffusion, and spatial process with Mat\'{e}rn dependencies.
The use of large transformer-based models such as BERT, GPT, and T5 has led to significant advancements in natural language processing. However, these models are computationally expensive, necessitating model compression techniques that reduce their size and complexity while maintaining accuracy. This project investigates and applies knowledge distillation for BERT model compression, specifically focusing on the TinyBERT student model. We explore various techniques to improve knowledge distillation, including experimentation with loss functions, transformer layer mapping methods, and tuning the weights of attention and representation loss and evaluate our proposed techniques on a selection of downstream tasks from the GLUE benchmark. The goal of this work is to improve the efficiency and effectiveness of knowledge distillation, enabling the development of more efficient and accurate models for a range of natural language processing tasks.
Reduced order models (ROMs) are widely used in scientific computing to tackle high-dimensional systems. However, traditional ROM methods may only partially capture the intrinsic geometric characteristics of the data. These characteristics encompass the underlying structure, relationships, and essential features crucial for accurate modeling. To overcome this limitation, we propose a novel ROM framework that integrates optimal transport (OT) theory and neural network-based methods. Specifically, we investigate the Kernel Proper Orthogonal Decomposition (kPOD) method exploiting the Wasserstein distance as the custom kernel, and we efficiently train the resulting neural network (NN) employing the Sinkhorn algorithm. By leveraging an OT-based nonlinear reduction, the presented framework can capture the geometric structure of the data, which is crucial for accurate learning of the reduced solution manifold. When compared with traditional metrics such as mean squared error or cross-entropy, exploiting the Sinkhorn divergence as the loss function enhances stability during training, robustness against overfitting and noise, and accelerates convergence. To showcase the approach's effectiveness, we conduct experiments on a set of challenging test cases exhibiting a slow decay of the Kolmogorov n-width. The results show that our framework outperforms traditional ROM methods in terms of accuracy and computational efficiency.
The industrial Internet of Things (IIoT) and network slicing (NS) paradigms have been envisioned as key enablers for flexible and intelligent manufacturing in the industry 4.0, where a myriad of interconnected machines, sensors, and devices of diversified quality of service (QoS) requirements coexist. To optimize network resource usage, stakeholders in the IIoT network are encouraged to take pragmatic steps towards resource sharing. However, resource sharing is only attractive if the entities involved are able to settle on a fair exchange of resource for remuneration in a win-win situation. In this paper, we design an economic model that analyzes the multilateral strategic trading interactions between sliced tenants in IIoT networks. We formulate the resource pricing and purchasing problem of the seller and buyer tenants as a cooperative Stackelberg game. Particularly, the cooperative game enforces collaboration among the buyer tenants by coalition formation in order to strengthen their position in resource price negotiations as opposed to acting individually, while the Stackelberg game determines the optimal policy optimization of the seller tenants and buyer tenant coalitions. To achieve a Stackelberg equilibrium (SE), a multi-agent deep reinforcement learning (MADRL) method is developed to make flexible pricing and purchasing decisions without prior knowledge of the environment. Simulation results and analysis prove that the proposed method achieves convergence and is superior to other baselines, in terms of utility maximization.
The recent advancements in Transformer-based Language Models have demonstrated significant potential in enhancing the multilingual capabilities of these models. The remarkable progress made in this domain not only applies to natural language tasks but also extends to the domain of programming languages. Despite the ability of these models to learn from multiple languages, evaluations typically focus on particular combinations of the same languages. In this study, we evaluate the similarity of programming languages by analyzing their representations using a CodeBERT-based model. Our experiments reveal that token representation in languages such as C++, Python, and Java exhibit proximity to one another, whereas the same tokens in languages such as Mathematica and R display significant dissimilarity. Our findings suggest that this phenomenon can potentially result in performance challenges when dealing with diverse languages. Thus, we recommend using our similarity measure to select a diverse set of programming languages when training and evaluating future models.
Unsupervised methods for reconstructing structures face significant challenges in capturing the geometric details with consistent structures among diverse shapes of the same category. To address this issue, we present a novel unsupervised structural reconstruction method, named DPF-Net, based on a new Deformable Primitive Field (DPF) representation, which allows for high-quality shape reconstruction using parameterized geometric primitives. We design a two-stage shape reconstruction pipeline which consists of a primitive generation module and a primitive deformation module to approximate the target shape of each part progressively. The primitive generation module estimates the explicit orientation, position, and size parameters of parameterized geometric primitives, while the primitive deformation module predicts a dense deformation field based on a parameterized primitive field to recover shape details. The strong shape prior encoded in parameterized geometric primitives enables our DPF-Net to extract high-level structures and recover fine-grained shape details consistently. The experimental results on three categories of objects in diverse shapes demonstrate the effectiveness and generalization ability of our DPF-Net on structural reconstruction and shape segmentation.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.