Full-Duplex (FD) communication can revolutionize wireless communications as it doubles the spectral efficiency and offers numerous other advantages over a half-duplex (HD) system. In this paper, we present a novel and practical joint hybrid beamforming (HYBF) and combining scheme for millimeter-wave (mmWave) massive multiple-input-multiple-output (MIMO) multi-user FD system for weighted sum-rate (WSR) maximization. All the devices are assumed to have a limited dynamic range (LDR), and we adopt an impairment-aware HYBF approach. We also present a novel interference and self-interference (SI) power allocation scheme to include the optimal power allocation. The analog processing stage is assumed to be quantized, and we consider both the unit-modulus and unconstrained cases. Compared to the traditional designs, the proposed design considers the joint sum-power and the practical per-antenna power constraints. To model the non-ideal hardware of a hybrid FD transceiver, we extend the traditional LDR noise model to mmWave. Our HYBF design relies on alternating optimization based on the minorization-maximization method. We investigate the maximum achievable gain of a hybrid multi-user FD system with different levels of the LDR noise variance and with different numbers of radio-frequency (RF) chains. Simulation results show that our HYBF scheme can significantly outperform the fully digital HD systems with only a few RF chains. We also show that amplitude manipulation at the analog stage can improve the performance when the number of RF chains is small.
In this paper, a massive multiple-input-multiple-output (mMIMO) testbed that is capable of mimicking realistic 5G new radio (NR) base station (BS) beamforming performance has been utilised to gather experimental-based evidence of 5G BS RF-EMF exposure within a real-world indoor environment. The mMIMO testbed has up to 128 RF channels with user-programmable software defined radio (SDR) capability. The stochastic nature of the 5G NR mMIMO system has been statistically assessed by evaluating the spatial variation of the RF-EMF exposure surrounding the mMIMO testbed when taking into account different beam profiles and data rates. Several other factors that influence the RF-EMF of mMIMO system have also being considered.
Cell-Free Massive multiple-input multiple-output (MIMO) and reconfigurable intelligent surface (RIS) are two promising technologies for application to beyond-5G networks. This paper considers Cell-Free Massive MIMO systems with the assistance of an RIS for enhancing the system performance under the presence of spatial correlation among the engineered scattering elements of the RIS. Distributed maximum-ratio processing is considered at the access points (APs). We introduce an aggregated channel estimation approach that provides sufficient information for data processing with the main benefit of reducing the overhead required for channel estimation. The considered system is studied by using asymptotic analysis which lets the number of APs and/or the number of RIS elements grow large. A lower bound for the channel capacity is obtained for a finite number of APs and engineered scattering elements of the RIS, and closed-form expressions for the uplink and downlink ergodic net throughput are formulated in terms of only the channel statistics. Based on the obtained analytical frameworks, we unveil the impact of channel correlation, the number of RIS elements, and the pilot contamination on the net throughput of each user. In addition, a simple control scheme for optimizing the configuration of the engineered scattering elements of the RIS is proposed, which is shown to increase the channel estimation quality, and, hence, the system performance. Numerical results demonstrate the effectiveness of the proposed system design and performance analysis. In particular, the performance benefits of using RISs in Cell-Free Massive MIMO systems are confirmed, especially if the direct links between the APs and the users are of insufficient quality with high probability.
Millimeter-wave communication is widely seen as a promising option to increase the capacity of vehicular networks, where it is expected that connected cars will soon need to transmit and receive large amounts of data. Due to harsh propagation conditions, mmWave systems resort to narrow beams to serve their users, and such beams need to be configured according to traffic demand and its spatial distribution, as well as interference. In this work, we address the beam management problem, considering an urban vehicular network composed of gNBs. We first build an accurate, yet tractable, system model and formulate an optimization problem aiming at maximizing the total network data rate while accounting for the stochastic nature of the network scenario. Then we develop a graph-based model capturing the main system characteristics and use it to develop a belief propagation algorithmic framework, called CRAB, that has low complexity and, hence, can effectively cope with large-scale scenarios. We assess the performance of our approach under real-world settings and show that, in comparison to state-of-the-art alternatives, CRAB provides on average a 50% improvement in the amount of data transferred by the single gNBs and up to 30% better user coverage.
This paper studies an intelligent reflecting surface (IRS)-aided multiple-input-multiple-output (MIMO) full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) operating in FD broadcasts energy signals to multiple devices for their energy harvesting (EH) in the downlink (DL) and meanwhile receives information signals from devices in the uplink (UL) with the help of an IRS. Taking into account the practical finite self-interference (SI) and the non-linear EH model, we formulate the weighted sum throughput maximization optimization problem by jointly optimizing DL/UL time allocation, precoding matrices at devices, transmit covariance matrices at the HAP, and phase shifts at the IRS. Since the resulting optimization problem is non-convex, there are no standard methods to solve it optimally in general. To tackle this challenge, we first propose an element-wise (EW) based algorithm, where each IRS phase shift is alternately optimized in an iterative manner. To reduce the computational complexity, a minimum mean-square error (MMSE) based algorithm is proposed, where we transform the original problem into an equivalent form based on the MMSE method, which facilities the design of an efficient iterative algorithm. In particular, the IRS phase shift optimization problem is recast as an second-order cone program (SOCP), where all the IRS phase shifts are simultaneously optimized. For comparison, we also study two suboptimal IRS beamforming configurations in simulations, namely partially dynamic IRS beamforming (PDBF) and static IRS beamforming (SBF), which strike a balance between the system performance and practical complexity.
A non-orthogonal multiple access (NOMA) inspired integrated sensing and communication (ISAC) system is investigated. A dual-functional base station (BS) serves multiple communication users while sensing multiple targets, by transmitting the non-orthogonal superposition of the communication and sensing signals. A NOMA inspired interference cancellation scheme is proposed, where part of the dedicated sensing signal is treated as the virtual communication signals to be mitigated at each communication user via successive interference cancellation (SIC). Based on this framework, the transmitted communication and sensing signals are jointly optimized to match the desired sensing beampattern, while satisfying the minimum rate requirement and the SIC condition at the communication users. Then, the formulated non-convex optimization problem is solved by invoking the successive convex approximation (SCA) to obtain a near-optimal solution. The numerical results show the proposed NOMA-inspired ISAC system can achieve better performance than the conventional ISAC system and comparable performance to the ideal ISAC system where all sensing interference is assumed to be removed unconditionally.
In this paper, we propose a wideband Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) communication system comprising of an FD MIMO node simultaneously communicating with two multi-antenna UpLink (UL) and DownLink (DL) nodes utilizing the same time and frequency resources. To suppress the strong Self-Interference (SI) signal due to simultaneous transmission and reception in FD MIMO systems, we propose a joint design of Analog and Digital (A/D) cancellation as well as transmit and receive beamforming capitalizing on baseband Orthogonal Frequency-Division Multiplexing (OFDM) signal modeling. Considering practical transmitter impairments, we present a multi-tap wideband analog canceller architecture whose number of taps does not scale with the number of transceiver antennas and multipath SI components. We also propose a novel adaptive digital cancellation based on truncated singular value decomposition that reduces the residual SI signal estimation parameters. To maximize the FD sum rate, a joint optimization framework is presented for A/D cancellation and digital beamforming. Finally, our extensive waveform simulation results demonstrate that the proposed wideband FD MIMO design exhibits higher SI cancellation capability with reduced complexity compared to existing cancellation techniques, resulting in improved achievable rate performance.
In this paper, a novel uplink communication for the transmissive reconfigurable metasurface (RMS) multi-antenna system with orthogonal frequency division multiple access (OFDMA) is investigated. Specifically, a transmissive RMS-based receiver equipped with a single receiving antenna is first proposed, and a far-near field channel model based on planar waves and spherical waves is given. Then, in order to maximize the system sum-rate of uplink communications, we formulate a joint optimization problem over subcarrier allocation, power allocation and RMS transmissive coefficient design. Due to the coupling of optimization variables, the optimization problem is non-convex, so it is challenging to solve it directly. In order to tackle this problem, the alternating optimization (AO) algorithm is used to decouple the optimization variables and divide the problem into two sub-problems to solve. First, the problem of joint subcarrier allocation and power allocation is solved via the Lagrangian dual decomposition method. Then, the RMS transmissive coefficient design can be obtained by applying difference-of-convex (DC) programming, successive convex approximation (SCA) and penalty function methods. Finally, the two sub-problems are iterated alternately until convergence is achieved. Numerical simulation results verify that the proposed algorithm has good convergence performance and can improve system sum-rate compared with other benchmark algorithms.
Recently, deep learning has been an area of intense research. However, as a kind of computing-intensive task, deep learning highly relies on the scale of GPU memory, which is usually prohibitive and scarce. Although there are some extensive works have been proposed for dynamic GPU memory management, they are hard to be applied to systems with multiple dynamic workloads, such as in-database machine learning systems. In this paper, we demonstrated TENSILE, a method of managing GPU memory in tensor granularity to reduce the GPU memory peak, considering the multiple dynamic workloads. TENSILE tackled the cold-starting and across-iteration scheduling problem existing in previous works. We implement TENSILE on a deep learning framework built by ourselves and evaluated its performance. The experiment results show that TENSILE can save more GPU memory with less extra time overhead than prior works in both single and multiple dynamic workloads scenarios.
In this paper, we propose a scheme for the joint optimization of the user transmit power and the antenna selection at the access points (AP)s of a user-centric cell-free massive multiple-input-multiple-output (UC CF-mMIMO) system. We derive an approximate expression for the achievable uplink rate of the users in a UC CF-mMIMO system in the presence of a mixed analog-to-digital converter (ADC) resolution profile at the APs. Using the derived approximation, we propose to maximize the uplink sum rate of UC CF-mMIMO systems subject to energy constraints at the APs. An alternating-optimization solution is proposed using binary particle swarm optimization (BPSO) and successive convex approximation (SCA). We also study the impact of various system parameters on the performance of the system.
With the advent of sixth-generation (6G) wireless communication networks, it requires substantially increasing wireless traffic and extending serving coverage. Reconfigurable intelligent surface (RIS) is widely considered as a promising technique which is capable of improving the system data rate, energy efficiency and coverage extension as well as the benefit of low power consumption. Moreover, full-duplex (FD) transmission provides simultaneous transmit and received signals, which theoretically enhances twice spectrum efficiency. However, the self-interference (SI) in FD is a challenging task requiring complex and high-overhead cancellation, which can be resolved by configuring appropriate phase of RIS elements. This paper has proposed an RIS-empowered full-duplex self-interference cancellation (RFSC) scheme to alleviate the severe SI in an RIS-FD system. We consider the SI minimization of RIS-FD uplink (UL) while guaranteeing quality-of-service (QoS) of UL users. The closed-form solution is theoretically derived by exploiting Lagrangian method under different numbers of RIS elements and receiving antennas. Simulation results reveal that the proposed RFSC scheme outperforms the scenario without RIS deployment in terms of higher signal-to-interference-plus-noise ratio (SINR). Due to effective interference mitigation, the proposed RFSC can achieve the highest SINR compared to other existing schemes in open literatures.