亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A limited set of tools exist for assessing whether the behavior of quantum machine learning models diverges from conventional models, outside of abstract or theoretical settings. We present a systematic application of explainable artificial intelligence techniques to analyze synthetic data generated from a hybrid quantum-classical neural network adapted from twenty different real-world data sets, including solar flares, cardiac arrhythmia, and speech data. Each of these data sets exhibits varying degrees of complexity and class imbalance. We benchmark the quantum-generated data relative to state-of-the-art methods for mitigating class imbalance for associated classification tasks. We leverage this approach to elucidate the qualities of a problem that make it more or less likely to be amenable to a hybrid quantum-classical generative model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · 去噪 · 量子機器學習 · Machine Learning ·
2023 年 10 月 9 日

Deep generative models are key-enabling technology to computer vision, text generation and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic models (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We demonstrate QuDDPM's capability in learning correlated quantum noise model and learning topological structure of nontrivial distribution of quantum data.

Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies.

We present a coordination method for multiple mobile manipulators to sort objects in clutter. We consider the object rearrangement problem in which the objects must be sorted into different groups in a particular order. In clutter, the order constraints could not be easily satisfied since some objects occlude other objects so the occluded ones are not directly accessible to the robots. Those objects occluding others need to be moved more than once to make the occluded objects accessible. Such rearrangement problems fall into the class of nonmonotone rearrangement problems which are computationally intractable. While the nonmonotone problems with order constraints are harder, involving with multiple robots requires another computation for task allocation. The proposed method first finds a sequence of objects to be sorted using a search such that the order constraint in each group is satisfied. The search can solve nonmonotone instances that require temporal relocation of some objects to access the next object to be sorted. Once a complete sorting sequence is found, the objects in the sequence are assigned to multiple mobile manipulators using a greedy allocation method. We develop four versions of the method with different search strategies. In the experiments, we show that our method can find a sorting sequence quickly (e.g., 4.6 sec with 20 objects sorted into five groups) even though the solved instances include hard nonmonotone ones. The extensive tests and the experiments in simulation show the ability of the method to solve the real-world sorting problem using multiple mobile manipulators.

In the analyses of cluster-randomized trials, mixed-model analysis of covariance (ANCOVA) is a standard approach for covariate adjustment and handling within-cluster correlations. However, when the normality, linearity, or the random-intercept assumption is violated, the validity and efficiency of the mixed-model ANCOVA estimators for estimating the average treatment effect remain unclear. Under the potential outcomes framework, we prove that the mixed-model ANCOVA estimators for the average treatment effect are consistent and asymptotically normal under arbitrary misspecification of its working model. If the probability of receiving treatment is 0.5 for each cluster, we further show that the model-based variance estimator under mixed-model ANCOVA1 (ANCOVA without treatment-covariate interactions) remains consistent, clarifying that the confidence interval given by standard software is asymptotically valid even under model misspecification. Beyond robustness, we discuss several insights on precision among classical methods for analyzing cluster-randomized trials, including the mixed-model ANCOVA, individual-level ANCOVA, and cluster-level ANCOVA estimators. These insights may inform the choice of methods in practice. Our analytical results and insights are illustrated via simulation studies and analyses of three cluster-randomized trials.

The moderate deviation regime is concerned with the finite block length trade-off between communication cost and error for information processing tasks in the asymptotic regime, where the communication cost approaches a capacity-like quantity and the error vanishes at the same time. We find exact characterisations of these trade-offs for a variety of fully quantum communication tasks, including quantum source coding, quantum state splitting, entanglement-assisted quantum channel coding, and entanglement-assisted quantum channel simulation. The main technical tool we derive is a tight relation between the partially smoothed max-information and the hypothesis testing relative entropy. This allows us to obtain the expansion of the partially smoothed max-information for i.i.d. states in the moderate deviation regime.

The problem of answering logical queries over incomplete knowledge graphs is receiving significant attention in the machine learning community. Neuro-symbolic models are a promising recent approach, showing good performance and allowing for good interpretability properties. These models rely on trained architectures to execute atomic queries, combining them with modules that simulate the symbolic operators in queries. Unfortunately, most neuro-symbolic query processors are limited to the so-called tree-like logical queries that admit a bottom-up execution, where the leaves are constant values or anchors, and the root is the target variable. Tree-like queries, while expressive, fail short to express properties in knowledge graphs that are important in practice, such as the existence of multiple edges between entities or the presence of triangles. We propose a framework for answering arbitrary conjunctive queries over incomplete knowledge graphs. The main idea of our method is to approximate a cyclic query by an infinite family of tree-like queries, and then leverage existing models for the latter. Our approximations achieve strong guarantees: they are complete, i.e. there are no false negatives, and optimal, i.e. they provide the best possible approximation using tree-like queries. Our method requires the approximations to be tree-like queries where the leaves are anchors or existentially quantified variables. Hence, we also show how some of the existing neuro-symbolic models can handle these queries, which is of independent interest. Experiments show that our approximation strategy achieves competitive results, and that including queries with existentially quantified variables tends to improve the general performance of these models, both on tree-like queries and on our approximation strategy.

Cross-validation (CV) is one of the most widely used techniques in statistical learning for estimating the test error of a model, but its behavior is not yet fully understood. It has been shown that standard confidence intervals for test error using estimates from CV may have coverage below nominal levels. This phenomenon occurs because each sample is used in both the training and testing procedures during CV and as a result, the CV estimates of the errors become correlated. Without accounting for this correlation, the estimate of the variance is smaller than it should be. One way to mitigate this issue is by estimating the mean squared error of the prediction error instead using nested CV. This approach has been shown to achieve superior coverage compared to intervals derived from standard CV. In this work, we generalize the nested CV idea to the Cox proportional hazards model and explore various choices of test error for this setting.

We present a machine learning framework capable of consistently inferring mathematical expressions of the hyperelastic energy functionals for incompressible materials from sparse experimental data and physical laws. To achieve this goal, we propose a polyconvex neural additive model (PNAM) that enables us to express the hyperelasticity model in a learnable feature space while enforcing polyconvexity. An upshot of this feature space obtained via PNAM is that (1) it is spanned by a set univariate basis that can be re-parametrized with a more complex mathematical form, and (2) the resultant elasticity model is guaranteed to fulfill the polyconvexity, which ensures that the acoustic tensor remains elliptic for any deformation. To further improve the interpretability, we use genetic programming to convert each univariate basis into a compact mathematical expression. The resultant multi-variable mathematical models obtained from this proposed framework are not only more interpretable but are also proven to fulfill physical laws. By controlling the compactness of the learned symbolic form, the machine learning-generated mathematical model also requires fewer arithmetic operations than the deep neural network counterparts during deployment. This latter attribute is crucial for scaling large-scale simulations where the constitutive responses of every integration point must be updated within each incremental time step. We compare our proposed model discovery framework against other state-of-the-art alternatives to assess the robustness and efficiency of the training algorithms and examine the trade-off between interpretability, accuracy, and precision of the learned symbolic hyperelasticity models obtained from different approaches. Our numerical results suggest that our approach extrapolates well outside the training data regime due to the precise incorporation of physics-based knowledge.

The prediction of system responses for a given fatigue test bench drive signal is a challenging task, for which linear frequency response function models are commonly used. To account for non-linear phenomena, a novel hybrid model is suggested, which augments existing approaches using Long Short-Term Memory networks. Additional virtual sensing applications of this method are demonstrated. The approach is tested using non-linear experimental data from a servo-hydraulic test rig and this dataset is made publicly available. A variety of metrics in time and frequency domains, as well as fatigue strength under variable amplitudes, are employed in the evaluation.

The joint modeling of longitudinal and time-to-event outcomes has become a popular tool in follow-up studies. However, fitting Bayesian joint models to large datasets, such as patient registries, can require extended computing times. To speed up sampling, we divided a patient registry dataset into subsamples, analyzed them in parallel, and combined the resulting Markov chain Monte Carlo draws into a consensus distribution. We used a simulation study to investigate how different consensus strategies perform with joint models. In particular, we compared grouping all draws together with using equal- and precision-weighted averages. We considered scenarios reflecting different sample sizes, numbers of data splits, and processor characteristics. Parallelization of the sampling process substantially decreased the time required to run the model. We found that the weighted-average consensus distributions for large sample sizes were nearly identical to the target posterior distribution. The proposed algorithm has been made available in an R package for joint models, JMbayes2. This work was motivated by the clinical interest in investigating the association between ppFEV1, a commonly measured marker of lung function, and the risk of lung transplant or death, using data from the US Cystic Fibrosis Foundation Patient Registry (35,153 individuals with 372,366 years of cumulative follow-up). Splitting the registry into five subsamples resulted in an 85\% decrease in computing time, from 9.22 to 1.39 hours. Splitting the data and finding a consensus distribution by precision-weighted averaging proved to be a computationally efficient and robust approach to handling large datasets under the joint modeling framework.

北京阿比特科技有限公司