亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of finding $K$ collision pairs in a random function $f : [N] \rightarrow [N]$ by using a quantum computer. We prove that the number of queries to the function in the quantum random oracle model must increase significantly when the size of the available memory is limited. Namely, we demonstrate that any algorithm using $S$ qubits of memory must perform a number $T$ of queries that satisfies the tradeoff $T^3 S \geq \Omega(K^3 N)$. Classically, the same question has only been settled recently by Dinur [Eurocrypt'20], who showed that the Parallel Collision Search algorithm of van Oorschot and Wiener achieves the optimal time-space tradeoff of $T^2 S = \Theta(K^2 N)$. Our result limits the extent to which quantum computing may decrease this tradeoff. Our method is based on a novel application of Zhandry's recording query technique [Crypto'19] for proving lower bounds in the exponentially small success probability regime. As a second application, we give a simpler proof of the time-space tradeoff $T^2 S \geq \Omega(N^3)$ for sorting $N$ numbers on a quantum computer, which was first obtained by Klauck, \v{S}palek and de Wolf [K\v{S}W07].

相關內容

In Layout Synthesis, the logical qubits of a quantum circuit are mapped to the physical qubits of a given quantum hardware platform, taking into account the connectivity of physical qubits. This involves inserting SWAP gates before an operation is applied on distant qubits. Optimal Layout Synthesis is crucial for practical Quantum Computing on current error-prone hardware: Minimizing the number of SWAP gates directly mitigates the error rates when running quantum circuits. In recent years, several approaches have been proposed for minimizing the required SWAP insertions. The proposed exact approaches can only scale to a small number of qubits. Proving that a number of swap insertions is optimal is much harder than producing near optimal mappings. In this paper, we provide two encodings for Optimal Layout Synthesis as a classical planning problem. We use optimal classical planners to synthesize the optimal layout for a standard set of benchmarks. Our results show the scalability of our approach compared to previous leading approaches. We can optimally map circuits with 9 qubits onto a 14 qubit platform, which could not be handled before by exact methods.

The trade algorithm, which includes the curveball and fastball implementations, is the state-of-the-art for uniformly sampling r x c binary matrices with fixed row and column sums. The mixing time of the trade algorithm is currently unknown, although 5r is currently used as a heuristic. We propose a distribution-based approach to estimating the mixing time, but which also can return a sample of matrices that are nearly guaranteed to be uniformly randomly sampled. In numerical experiments on matrices that vary by size, fill, and row and column sum distributions, we find that the upper bound on mixing time is at least 10r, and that it increases as a function of both c and the fraction of cells containing a 1.

The central space of a joint distribution $(\vX,Y)$ is the minimal subspace $\mathcal S$ such that $Y\perp\hspace{-2mm}\perp \vX \mid P_{\mathcal S}\vX$ where $P_{\mathcal S}$ is the projection onto $\mathcal S$. Sliced inverse regression (SIR), one of the most popular methods for estimating the central space, often performs poorly when the structural dimension $d=\operatorname{dim}\left( \mathcal S \right)$ is large (e.g., $\geqs 5$). In this paper, we demonstrate that the generalized signal-noise-ratio (gSNR) tends to be extremely small for a general multiple-index model when $d$ is large. Then we determine the minimax rate for estimating the central space over a large class of high dimensional distributions with a large structural dimension $d$ (i.e., there is no constant upper bound on $d$) in the low gSNR regime. This result not only extends the existing minimax rate results for estimating the central space of distributions with fixed $d$ to that with a large $d$, but also clarifies that the degradation in SIR performance is caused by the decay of signal strength. The technical tools developed here might be of independent interest for studying other central space estimation methods.

The multiple testing literature has primarily dealt with three types of dependence assumptions between p-values: independence, positive regression dependence, and arbitrary dependence. In this paper, we provide what we believe are the first theoretical results under various notions of negative dependence (negative Gaussian dependence, negative regression dependence, negative association, negative orthant dependence and weak negative dependence). These include the Simes global null test and the Benjamini-Hochberg procedure, which are known experimentally to be anti-conservative under negative dependence. The anti-conservativeness of these procedures is bounded by factors smaller than that under arbitrary dependence (in particular, by factors independent of the number of hypotheses tested). We also provide new results about negatively dependent e-values, and provide several examples as to when negative dependence may arise. Our proofs are elementary and short, thus arguably amenable to extensions and generalizations. We end with a few pressing open questions that we think our paper opens a door to solving.

Arguably, the largest class of stochastic processes generated by means of a finite memory consists of those that are sequences of observations produced by sequential measurements in a suitable generalized probabilistic theory (GPT). These are constructed from a finite-dimensional memory evolving under a set of possible linear maps, and with probabilities of outcomes determined by linear functions of the memory state. Examples of such models are given by classical hidden Markov processes, where the memory state is a probability distribution, and at each step it evolves according to a non-negative matrix, and hidden quantum Markov processes, where the memory state is a finite dimensional quantum state, and at each step it evolves according to a completely positive map. Here we show that the set of processes admitting a finite-dimensional explanation do not need to be explainable in terms of either classical probability or quantum mechanics. To wit, we exhibit families of processes that have a finite-dimensional explanation, defined manifestly by the dynamics of explicitly given GPT, but that do not admit a quantum, and therefore not even classical, explanation in finite dimension. Furthermore, we present a family of quantum processes on qubits and qutrits that do not admit a classical finite-dimensional realization, which includes examples introduced earlier by Fox, Rubin, Dharmadikari and Nadkarni as functions of infinite dimensional Markov chains, and lower bound the size of the memory of a classical model realizing a noisy version of the qubit processes.

We propose a least-squares formulation for parabolic equations in the natural $L^2(0,T;V^*)\times H$ norm which avoids regularity assumptions on the data of the problem. For the abstract heat equation the resulting bilinear form then is symmetric, continuous, and coercive. This among other things paves the ground for classical space-time a priori and a posteriori Galerkin frameworks for the numerical approximation of the solution of the abstract heat equation. Moreover, the approach is applicable in e.g. optimal control problems with (parametrized) parabolic equations, and for certification of reduced basis methods with parabolic equations.

The $\Sigma$-QMAC problem is introduced, involving $S$ servers, $K$ classical ($\mathbb{F}_d$) data streams, and $T$ independent quantum systems. Data stream ${\sf W}_k, k\in[K]$ is replicated at a subset of servers $\mathcal{W}(k)\subset[S]$, and quantum system $\mathcal{Q}_t, t\in[T]$ is distributed among a subset of servers $\mathcal{E}(t)\subset[S]$ such that Server $s\in\mathcal{E}(t)$ receives subsystem $\mathcal{Q}_{t,s}$ of $\mathcal{Q}_t=(\mathcal{Q}_{t,s})_{s\in\mathcal{E}(t)}$. Servers manipulate their quantum subsystems according to their data and send the subsystems to a receiver. The total download cost is $\sum_{t\in[T]}\sum_{s\in\mathcal{E}(t)}\log_d|\mathcal{Q}_{t,s}|$ qudits, where $|\mathcal{Q}|$ is the dimension of $\mathcal{Q}$. The states and measurements of $(\mathcal{Q}_t)_{t\in[T]}$ are required to be separable across $t\in[T]$ throughout, but for each $t\in[T]$, the subsystems of $\mathcal{Q}_{t}$ can be prepared initially in an arbitrary (independent of data) entangled state, manipulated arbitrarily by the respective servers, and measured jointly by the receiver. From the measurements, the receiver must recover the sum of all data streams. Rate is defined as the number of dits ($\mathbb{F}_d$ symbols) of the desired sum computed per qudit of download. The capacity of $\Sigma$-QMAC, i.e., the supremum of achievable rates is characterized for arbitrary data and entanglement distributions $\mathcal{W}, \mathcal{E}$. Coding based on the $N$-sum box abstraction is optimal in every case.

Training a neural network (NN) typically relies on some type of curve-following method, such as gradient descent (GD) (and stochastic gradient descent (SGD)), ADADELTA, ADAM or limited memory algorithms. Convergence for these algorithms usually relies on having access to a large quantity of observations in order to achieve a high level of accuracy and, with certain classes of functions, these algorithms could take multiple epochs of data points to catch on. Herein, a different technique with the potential of achieving dramatically better speeds of convergence, especially for shallow networks, is explored: it does not curve-follow but rather relies on 'decoupling' hidden layers and on updating their weighted connections through bootstrapping, resampling and linear regression. By utilizing resampled observations, the convergence of this process is empirically shown to be remarkably fast and to require a lower amount of data points: in particular, our experiments show that one needs a fraction of the observations that are required with traditional neural network training methods to approximate various classes of functions.

In this work we propose a low rank approximation of high fidelity finite element simulations by utilizing weights corresponding to areas of high stress levels for an abdominal aortic aneurysm, i.e. a deformed blood vessel. We focus on the van Mises stress, which corresponds to the rupture risk of the aorta. This is modeled as a Gaussian Markov random field and we define our approximation as a basis of vectors that solve a series of optimization problems. Each of these problems describes the minimization of an expected weighted quadratic loss. The weights, which encapsulate the importance of each grid point of the finite elements, can be chosen freely - either data driven or by incorporating domain knowledge. Along with a more general discussion of mathematical properties we provide an effective numerical heuristic to compute the basis under general conditions. We explicitly explore two such bases on the surface of a high fidelity finite element grid and show their efficiency for compression. We further utilize the approach to predict the van Mises stress in areas of interest using low and high fidelity simulations. Due to the high dimension of the data we have to take extra care to keep the problem numerically feasible. This is also a major concern of this work.

A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.

北京阿比特科技有限公司