亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This letter is concerned with solving continuous-discrete Gaussian smoothing problems by using the Taylor moment expansion (TME) scheme. In the proposed smoothing method, we apply the TME method to approximate the transition density of the stochastic differential equation in the dynamic model. Furthermore, we derive a theoretical error bound (in the mean square sense) of the TME smoothing estimates showing that the smoother is stable under weak assumptions. Numerical experiments are presented in order to illustrate practical use of the method.

相關內容

We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E$^2$VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.

Image acquisition and segmentation are likely to introduce noise. Further image processing such as image registration and parameterization can introduce additional noise. It is thus imperative to reduce noise measurements and boost signal. In order to increase the signal-to-noise ratio (SNR) and smoothness of data required for the subsequent random field theory based statistical inference, some type of smoothing is necessary. Among many image smoothing methods, Gaussian kernel smoothing has emerged as a de facto smoothing technique among brain imaging researchers due to its simplicity in numerical implementation. Gaussian kernel smoothing also increases statistical sensitivity and statistical power as well as Gausianness. Gaussian kernel smoothing can be viewed as weighted averaging of voxel values. Then from the central limit theorem, the weighted average should be more Gaussian.

Approximate inference methods like the Laplace method, Laplace approximations and variational methods, amongst others, are popular methods when exact inference is not feasible due to the complexity of the model or the abundance of data. In this paper we propose a hybrid approximate method namely Low-Rank Variational Bayes correction (VBC), that uses the Laplace method and subsequently a Variational Bayes correction to the posterior mean. The cost is essentially that of the Laplace method which ensures scalability of the method. We illustrate the method and its advantages with simulated and real data, on small and large scale.

Convolutional dictionary learning (CDL), the problem of estimating shift-invariant templates from data, is typically conducted in the absence of a prior/structure on the templates. In data-scarce or low signal-to-noise ratio (SNR) regimes, learned templates overfit the data and lack smoothness, which can affect the predictive performance of downstream tasks. To address this limitation, we propose GPCDL, a convolutional dictionary learning framework that enforces priors on templates using Gaussian Processes (GPs). With the focus on smoothness, we show theoretically that imposing a GP prior is equivalent to Wiener filtering the learned templates, thereby suppressing high-frequency components and promoting smoothness. We show that the algorithm is a simple extension of the classical iteratively reweighted least squares algorithm, independent of the choice of GP kernels. This property allows one to experiment flexibly with different smoothness assumptions. Through simulation, we show that GPCDL learns smooth dictionaries with better accuracy than the unregularized alternative across a range of SNRs. Through an application to neural spiking data, we show that GPCDL learns a more accurate and visually-interpretable smooth dictionary, leading to superior predictive performance compared to non-regularized CDL, as well as parametric alternatives.

In this paper, we consider a boundary value problem (BVP) for a fourth order nonlinear functional integro-differential equation. We establish the existence and uniqueness of solution and construct a numerical method for solving it. We prove that the method is of second order accuracy and obtain an estimate for the total error. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the numerical method.

This thesis is mainly concerned with state-space approaches for solving deep (temporal) Gaussian process (DGP) regression problems. More specifically, we represent DGPs as hierarchically composed systems of stochastic differential equations (SDEs), and we consequently solve the DGP regression problem by using state-space filtering and smoothing methods. The resulting state-space DGP (SS-DGP) models generate a rich class of priors compatible with modelling a number of irregular signals/functions. Moreover, due to their Markovian structure, SS-DGPs regression problems can be solved efficiently by using Bayesian filtering and smoothing methods. The second contribution of this thesis is that we solve continuous-discrete Gaussian filtering and smoothing problems by using the Taylor moment expansion (TME) method. This induces a class of filters and smoothers that can be asymptotically exact in predicting the mean and covariance of stochastic differential equations (SDEs) solutions. Moreover, the TME method and TME filters and smoothers are compatible with simulating SS-DGPs and solving their regression problems. Lastly, this thesis features a number of applications of state-space (deep) GPs. These applications mainly include, (i) estimation of unknown drift functions of SDEs from partially observed trajectories and (ii) estimation of spectro-temporal features of signals.

We present a family of discretizations for the Variable Eddington Factor (VEF) equations that have high-order accuracy on curved meshes and efficient preconditioned iterative solvers. The VEF discretizations are combined with a high-order Discontinuous Galerkin transport discretization to form an effective high-order, linear transport method. The VEF discretizations are derived by extending the unified analysis of Discontinuous Galerkin methods for elliptic problems to the VEF equations. This framework is used to define analogs of the interior penalty, second method of Bassi and Rebay, minimal dissipation local Discontinuous Galerkin, and continuous finite element methods. The analysis of subspace correction preconditioners, which use a continuous operator to iteratively precondition the discontinuous discretization, is extended to the case of the non-symmetric VEF system. Numerical results demonstrate that the VEF discretizations have arbitrary-order accuracy on curved meshes, preserve the thick diffusion limit, and are effective on a proxy problem from thermal radiative transfer in both outer transport iterations and inner preconditioned linear solver iterations. In addition, a parallel weak scaling study of the interior penalty VEF discretization demonstrates the scalability of the method out to 1152 processors.

We present a continuous formulation of machine learning, as a problem in the calculus of variations and differential-integral equations, very much in the spirit of classical numerical analysis and statistical physics. We demonstrate that conventional machine learning models and algorithms, such as the random feature model, the shallow neural network model and the residual neural network model, can all be recovered as particular discretizations of different continuous formulations. We also present examples of new models, such as the flow-based random feature model, and new algorithms, such as the smoothed particle method and spectral method, that arise naturally from this continuous formulation. We discuss how the issues of generalization error and implicit regularization can be studied under this framework.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.

北京阿比特科技有限公司