The prevalence of mobility impairments due to conditions such as spinal cord injuries, strokes, and degenerative diseases is on the rise globally. Lower-limb exoskeletons have been increasingly recognized as a viable solution for enhancing mobility and rehabilitation for individuals with such impairments. However, existing exoskeleton control systems often suffer from limitations such as latency, lack of adaptability, and computational inefficiency. To address these challenges, this paper introduces a novel online adversarial learning architecture integrated with edge computing for high-level lower-limb exoskeleton control. In the proposed architecture, sensor data from the user is processed in real-time through edge computing nodes, which then interact with an online adversarial learning model. This model adapts to the user's specific needs and controls the exoskeleton with minimal latency. Experimental evaluations demonstrate significant improvements in control accuracy and adaptability, as well as enhanced quality-of-service (QoS) metrics. These findings indicate that the integration of online adversarial learning with edge computing offers a robust and efficient approach for the next generation of lower-limb exoskeleton control systems.
Despite the continuous development of the different operational ensemble prediction systems over the past decades, ensemble forecasts still might suffer from lack of calibration and/or display systematic bias, thus require some post-processing to improve their forecast skill. Here we focus on visibility, which quantity plays a crucial role e.g. in aviation and road safety or in ship navigation, and propose a parametric model where the predictive distribution is a mixture of a gamma and a truncated normal distribution, both right censored at the maximal reported visibility value. The new model is evaluated in two case studies based on visibility ensemble forecasts of the European Centre for Medium-Range Weather Forecasts covering two distinct domains in Central and Western Europe and two different time periods. The results of the case studies indicate that climatology is substantially superior to the raw ensemble; nevertheless, the forecast skill can be further improved by post-processing, at least for short lead times. Moreover, the proposed mixture model consistently outperforms the Bayesian model averaging approach used as reference post-processing technique.
Numerous applications in the field of molecular communications (MC) such as healthcare systems are often event-driven. The conventional Shannon capacity may not be the appropriate metric for assessing performance in such cases. We propose the identification (ID) capacity as an alternative metric. Particularly, we consider randomized identification (RI) over the discrete-time Poisson channel (DTPC), which is typically used as a model for MC systems that utilize molecule-counting receivers. In the ID paradigm, the receiver's focus is not on decoding the message sent. However, he wants to determine whether a message of particular significance to him has been sent or not. In contrast to Shannon transmission codes, the size of ID codes for a Discrete Memoryless Channel (DMC) grows doubly exponentially fast with the blocklength, if randomized encoding is used. In this paper, we derive the capacity formula for RI over the DTPC subject to some peak and average power constraints. Furthermore, we analyze the case of state-dependent DTPC.
Various processes can be modelled as quasi-reaction systems of stochastic differential equations, such as cell differentiation and disease spreading. Since the underlying data of particle interactions, such as reactions between proteins or contacts between people, are typically unobserved, statistical inference of the parameters driving these systems is developed from concentration data measuring each unit in the system over time. While observing the continuous time process at a time scale as fine as possible should in theory help with parameter estimation, the existing Local Linear Approximation (LLA) methods fail in this case, due to numerical instability caused by small changes of the system at successive time points. On the other hand, one may be able to reconstruct the underlying unobserved interactions from the observed count data. Motivated by this, we first formalise the latent event history model underlying the observed count process. We then propose a computationally efficient Expectation-Maximation algorithm for parameter estimation, with an extended Kalman filtering procedure for the prediction of the latent states. A simulation study shows the performance of the proposed method and highlights the settings where it is particularly advantageous compared to the existing LLA approaches. Finally, we present an illustration of the methodology on the spreading of the COVID-19 pandemic in Italy.
Quantum adversarial machine learning is an emerging field that studies the vulnerability of quantum learning systems against adversarial perturbations and develops possible defense strategies. Quantum universal adversarial perturbations are small perturbations, which can make different input samples into adversarial examples that may deceive a given quantum classifier. This is a field that was rarely looked into but worthwhile investigating because universal perturbations might simplify malicious attacks to a large extent, causing unexpected devastation to quantum machine learning models. In this paper, we take a step forward and explore the quantum universal perturbations in the context of heterogeneous classification tasks. In particular, we find that quantum classifiers that achieve almost state-of-the-art accuracy on two different classification tasks can be both conclusively deceived by one carefully-crafted universal perturbation. This result is explicitly demonstrated with well-designed quantum continual learning models with elastic weight consolidation method to avoid catastrophic forgetting, as well as real-life heterogeneous datasets from hand-written digits and medical MRI images. Our results provide a simple and efficient way to generate universal perturbations on heterogeneous classification tasks and thus would provide valuable guidance for future quantum learning technologies.
Confounder selection, namely choosing a set of covariates to control for confounding between a treatment and an outcome, is arguably the most important step in the design of observational studies. Previous methods, such as Pearl's celebrated back-door criterion, typically require pre-specifying a causal graph, which can often be difficult in practice. We propose an interactive procedure for confounder selection that does not require pre-specifying the graph or the set of observed variables. This procedure iteratively expands the causal graph by finding what we call "primary adjustment sets" for a pair of possibly confounded variables. This can be viewed as inverting a sequence of latent projections of the underlying causal graph. Structural information in the form of primary adjustment sets is elicited from the user, bit by bit, until either a set of covariates are found to control for confounding or it can be determined that no such set exists. Other information, such as the causal relations between confounders, is not required by the procedure. We show that if the user correctly specifies the primary adjustment sets in every step, our procedure is both sound and complete.
The aim of this study is to analyze the effect of serum metabolites on diabetic nephropathy (DN) and predict the prevalence of DN through a machine learning approach. The dataset consists of 548 patients from April 2018 to April 2019 in Second Affiliated Hospital of Dalian Medical University (SAHDMU). We select the optimal 38 features through a Least absolute shrinkage and selection operator (LASSO) regression model and a 10-fold cross-validation. We compare four machine learning algorithms, including eXtreme Gradient Boosting (XGB), random forest, decision tree and logistic regression, by AUC-ROC curves, decision curves, calibration curves. We quantify feature importance and interaction effects in the optimal predictive model by Shapley Additive exPlanations (SHAP) method. The XGB model has the best performance to screen for DN with the highest AUC value of 0.966. The XGB model also gains more clinical net benefits than others and the fitting degree is better. In addition, there are significant interactions between serum metabolites and duration of diabetes. We develop a predictive model by XGB algorithm to screen for DN. C2, C5DC, Tyr, Ser, Met, C24, C4DC, and Cys have great contribution in the model, and can possibly be biomarkers for DN.
Derivatives are a key nonparametric functional in wide-ranging applications where the rate of change of an unknown function is of interest. In the Bayesian paradigm, Gaussian processes (GPs) are routinely used as a flexible prior for unknown functions, and are arguably one of the most popular tools in many areas. However, little is known about the optimal modelling strategy and theoretical properties when using GPs for derivatives. In this article, we study a plug-in strategy by differentiating the posterior distribution with GP priors for derivatives of any order. This practically appealing plug-in GP method has been previously perceived as suboptimal and degraded, but this is not necessarily the case. We provide posterior contraction rates for plug-in GPs and establish that they remarkably adapt to derivative orders. We show that the posterior measure of the regression function and its derivatives, with the same choice of hyperparameter that does not depend on the order of derivatives, converges at the minimax optimal rate up to a logarithmic factor for functions in certain classes. We analyze a data-driven hyperparameter tuning method based on empirical Bayes, and show that it satisfies the optimal rate condition while maintaining computational efficiency. This article to the best of our knowledge provides the first positive result for plug-in GPs in the context of inferring derivative functionals, and leads to a practically simple nonparametric Bayesian method with optimal and adaptive hyperparameter tuning for simultaneously estimating the regression function and its derivatives. Simulations show competitive finite sample performance of the plug-in GP method. A climate change application for analyzing the global sea-level rise is discussed.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
Models of complex technological systems inherently contain interactions and dependencies among their input variables that affect their joint influence on the output. Such models are often computationally expensive and few sensitivity analysis methods can effectively process such complexities. Moreover, the sensitivity analysis field as a whole pays limited attention to the nature of interaction effects, whose understanding can prove to be critical for the design of safe and reliable systems. In this paper, we introduce and extensively test a simple binning approach for computing sensitivity indices and demonstrate how complementing it with the smart visualization method, simulation decomposition (SimDec), can permit important insights into the behavior of complex engineering models. The simple binning approach computes first-, second-order effects, and a combined sensitivity index, and is considerably more computationally efficient than Sobol' indices. The totality of the sensitivity analysis framework provides an efficient and intuitive way to analyze the behavior of complex systems containing interactions and dependencies.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.