Digital and physical footprints are a trail of user activities collected over the use of software applications and systems. As software becomes ubiquitous, protecting user privacy has become challenging. With the increasing of user privacy awareness and advent of privacy regulations and policies, there is an emerging need to implement software systems that enhance the protection of personal data processing. However, existing privacy regulations and policies only provide high-level principles which are difficult for software engineers to design and implement privacy-aware systems. In this paper, we develop a taxonomy that provides a comprehensive set of privacy requirements based on four well-established personal data protection regulations and privacy frameworks, the General Data Protection Regulation (GDPR), ISO/IEC 29100, Thailand Personal Data Protection (PDPA) and Asia-Pacific Economic Cooperation (APEC) privacy framework. These requirements are extracted, classified and refined into a level that can be used to map with issue reports. We have also performed a study on how two large open-source software projects (Google Chrome and Moodle) address the privacy requirements in our taxonomy through mining their issue reports. The paper discusses how the collected issues were classified, and presents the findings and insights generated from our study.
Empirical results in software engineering have long started to show that findings are unlikely to be applicable to all software systems, or any domain: results need to be evaluated in specified contexts, and limited to the type of systems that they were extracted from. This is a known issue, and requires the establishment of a classification of software types. This paper makes two contributions: the first is to evaluate the quality of the current software classifications landscape. The second is to perform a case study showing how to create a classification of software types using a curated set of software systems. Our contributions show that existing, and very likely even new, classification attempts are deemed to fail for one or more issues, that we named as the `antipatterns' of software classification tasks. We collected 7 of these antipatterns that emerge from both our case study, and the existing classifications. These antipatterns represent recurring issues in a classification, so we discuss practical ways to help researchers avoid these pitfalls. It becomes clear that classification attempts must also face the daunting task of formulating a taxonomy of software types, with the objective of establishing a hierarchy of categories in a classification.
Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.
The emerging public awareness and government regulations of data privacy motivate new paradigms of collecting and analyzing data that are transparent and acceptable to data owners. We present a new concept of privacy and corresponding data formats, mechanisms, and theories for privatizing data during data collection. The privacy, named Interval Privacy, enforces the raw data conditional distribution on the privatized data to be the same as its unconditional distribution over a nontrivial support set. Correspondingly, the proposed privacy mechanism will record each data value as a random interval (or, more generally, a range) containing it. The proposed interval privacy mechanisms can be easily deployed through survey-based data collection interfaces, e.g., by asking a respondent whether its data value is within a randomly generated range. Another unique feature of interval mechanisms is that they obfuscate the truth but do not perturb it. Using narrowed range to convey information is complementary to the popular paradigm of perturbing data. Also, the interval mechanisms can generate progressively refined information at the discretion of individuals, naturally leading to privacy-adaptive data collection. We develop different aspects of theory such as composition, robustness, distribution estimation, and regression learning from interval-valued data. Interval privacy provides a new perspective of human-centric data privacy where individuals have a perceptible, transparent, and simple way of sharing sensitive data.
Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates--while accounting for this structured dependence--remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single "best" subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.
Background. From information theory, surprisal is a measurement of how unexpected an event is. Statistical language models provide a probabilistic approximation of natural languages, and because surprisal is constructed with the probability of an event occuring, it is therefore possible to determine the surprisal associated with English sentences. The issues and pull requests of software repository issue trackers give insight into the development process and likely contain the surprising events of this process. Objective. Prior works have identified that unusual events in software repositories are of interest to developers, and use simple code metrics-based methods for detecting them. In this study we will propose a new method for unusual event detection in software repositories using surprisal. With the ability to find surprising issues and pull requests, we intend to further analyse them to determine if they actually hold importance in a repository, or if they pose a significant challenge to address. If it is possible to find bad surprises early, or before they cause additional troubles, it is plausible that effort, cost and time will be saved as a result. Method. After extracting the issues and pull requests from 5000 of the most popular software repositories on GitHub, we will train a language model to represent these issues. We will measure their perceived importance in the repository, measure their resolution difficulty using several analogues, measure the surprisal of each, and finally generate inferential statistics to describe any correlations.
In variable selection, a selection rule that prescribes the permissible sets of selected variables (called a "selection dictionary") is desirable due to the inherent structural constraints among the candidate variables. The methods that can incorporate such restrictions can improve model interpretability and prediction accuracy. Penalized regression can integrate selection rules by assigning the coefficients to different groups and then applying penalties to the groups. However, no general framework has been proposed to formalize selection rules and their applications. In this work, we establish a framework for structured variable selection that can incorporate universal structural constraints. We develop a mathematical language for constructing arbitrary selection rules, where the selection dictionary is formally defined. We show that all selection rules can be represented as a combination of operations on constructs, which can be used to identify the related selection dictionary. One may then apply some criteria to select the best model. We show that the theoretical framework can help to identify the grouping structure in existing penalized regression methods. In addition, we formulate structured variable selection into mixed-integer optimization problems which can be solved by existing software. Finally, we discuss the significance of the framework in the context of statistics.
Recent times are witnessing rapid development in machine learning algorithm systems, especially in reinforcement learning, natural language processing, computer and robot vision, image processing, speech, and emotional processing and understanding. In tune with the increasing importance and relevance of machine learning models, algorithms, and their applications, and with the emergence of more innovative uses cases of deep learning and artificial intelligence, the current volume presents a few innovative research works and their applications in real world, such as stock trading, medical and healthcare systems, and software automation. The chapters in the book illustrate how machine learning and deep learning algorithms and models are designed, optimized, and deployed. The volume will be useful for advanced graduate and doctoral students, researchers, faculty members of universities, practicing data scientists and data engineers, professionals, and consultants working on the broad areas of machine learning, deep learning, and artificial intelligence.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.
Interest in the field of Explainable Artificial Intelligence has been growing for decades and has accelerated recently. As Artificial Intelligence models have become more complex, and often more opaque, with the incorporation of complex machine learning techniques, explainability has become more critical. Recently, researchers have been investigating and tackling explainability with a user-centric focus, looking for explanations to consider trustworthiness, comprehensibility, explicit provenance, and context-awareness. In this chapter, we leverage our survey of explanation literature in Artificial Intelligence and closely related fields and use these past efforts to generate a set of explanation types that we feel reflect the expanded needs of explanation for today's artificial intelligence applications. We define each type and provide an example question that would motivate the need for this style of explanation. We believe this set of explanation types will help future system designers in their generation and prioritization of requirements and further help generate explanations that are better aligned to users' and situational needs.