亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the literature on algorithms for performing the multi-term addition $s_n=\sum_{i=1}^n x_i$ using floating-point arithmetic it is often shown that a hardware unit that has single normalization and rounding improves precision, area, latency, and power consumption, compared with the use of standard add or fused multiply-add units. However, non-monotonicity can appear when computing sums with a subclass of multi-term addition units, which currently is not explored in the literature. We demonstrate that common techniques for performing multi-term addition with $n\geq 4$, without normalization of intermediate quantities, can result in non-monotonicity -- increasing one of the addends $x_i$ decreases the sum $s_n$. Summation is required in dot product and matrix multiplication operations, operations that have increasingly started appearing in the hardware of supercomputers, thus knowing where monotonicity is preserved can be of interest to the users of these machines. Our results suggest that non-monotonicity of summation, in some of the commercial hardware devices that implement a specific class of multi-term adders, is a feature that may have appeared unintentionally as a consequence of design choices that reduce circuit area and other metrics. To demonstrate our findings, we use formal proofs as well as a numerical simulation of non-monotonic multi-term adders in MATLAB.

相關內容

In this paper, we investigate the problem of deciding whether two standard normal random vectors $\mathsf{X}\in\mathbb{R}^{n}$ and $\mathsf{Y}\in\mathbb{R}^{n}$ are correlated or not. This is formulated as a hypothesis testing problem, where under the null hypothesis, these vectors are statistically independent, while under the alternative, $\mathsf{X}$ and a randomly and uniformly permuted version of $\mathsf{Y}$, are correlated with correlation $\rho$. We analyze the thresholds at which optimal testing is information-theoretically impossible and possible, as a function of $n$ and $\rho$. To derive our information-theoretic lower bounds, we develop a novel technique for evaluating the second moment of the likelihood ratio using an orthogonal polynomials expansion, which among other things, reveals a surprising connection to integer partition functions. We also study a multi-dimensional generalization of the above setting, where rather than two vectors we observe two databases/matrices, and furthermore allow for partial correlations between these two.

We prove that to each real singularity $f: (\mathbb{R}^{n+1}, 0) \to (\mathbb{R}, 0)$ one can associate two systems of differential equations $\mathfrak{g}^{k\pm}_f$ which are pushforwards in the category of $\mathcal{D}$-modules over $\mathbb{R}^{\pm}$, of the sheaf of real analytic functions on the total space of the positive, respectively negative, Milnor fibration. We prove that for $k=0$ if $f$ is an isolated singularity then $\mathfrak{g}^{\pm}$ determines the the $n$-th homology groups of the positive, respectively negative, Milnor fibre. We then calculate $\mathfrak{g}^{+}$ for ordinary quadratic singularities and prove that under certain conditions on the choice of morsification, one recovers the top homology groups of the Milnor fibers of any isolated singularity $f$. As an application we construct a public-key encryption scheme based on morsification of singularities.

We present the first $\varepsilon$-differentially private, computationally efficient algorithm that estimates the means of product distributions over $\{0,1\}^d$ accurately in total-variation distance, whilst attaining the optimal sample complexity to within polylogarithmic factors. The prior work had either solved this problem efficiently and optimally under weaker notions of privacy, or had solved it optimally while having exponential running times.

In Linear Logic ($\mathsf{LL}$), the exponential modality $!$ brings forth a distinction between non-linear proofs and linear proofs, where linear means using an argument exactly once. Differential Linear Logic ($\mathsf{DiLL}$) is an extension of Linear Logic which includes additional rules for $!$ which encode differentiation and the ability of linearizing proofs. On the other hand, Graded Linear Logic ($\mathsf{GLL}$) is a variation of Linear Logic in such a way that $!$ is now indexed over a semiring $R$. This $R$-grading allows for non-linear proofs of degree $r \in R$, such that the linear proofs are of degree $1 \in R$. There has been recent interest in combining these two variations of $\mathsf{LL}$ together and developing Graded Differential Linear Logic ($\mathsf{GDiLL}$). In this paper we present a sequent calculus for $\mathsf{GDiLL}$, as well as introduce its categorical semantics, which we call graded differential categories, using both coderelictions and deriving transformations. We prove that symmetric powers always give graded differential categories, and provide other examples of graded differential categories. We also discuss graded versions of (monoidal) coalgebra modalities, additive bialgebra modalities, and the Seely isomorphisms, as well as their implementations in the sequent calculus of $\mathsf{GDiLL}$.

In an instance of the minimum eigenvalue problem, we are given a collection of $n$ vectors $v_1,\ldots, v_n \subset {\mathbb{R}^d}$, and the goal is to pick a subset $B\subseteq [n]$ of given vectors to maximize the minimum eigenvalue of the matrix $\sum_{i\in B} v_i v_i^{\top} $. Often, additional combinatorial constraints such as cardinality constraint $\left(|B|\leq k\right)$ or matroid constraint ($B$ is a basis of a matroid defined on $[n]$) must be satisfied by the chosen set of vectors. The minimum eigenvalue problem with matroid constraints models a wide variety of problems including the Santa Clause problem, the E-design problem, and the constructive Kadison-Singer problem. In this paper, we give a randomized algorithm that finds a set $B\subseteq [n]$ subject to any matroid constraint whose minimum eigenvalue is at least $(1-\epsilon)$ times the optimum, with high probability. The running time of the algorithm is $O\left( n^{O(d\log(d)/\epsilon^2)}\right)$. In particular, our results give a polynomial time asymptotic scheme when the dimension of the vectors is constant. Our algorithm uses a convex programming relaxation of the problem after guessing a rescaling which allows us to apply pipage rounding and matrix Chernoff inequalities to round to a good solution. The key new component is a structural lemma which enables us to "guess'' the appropriate rescaling, which could be of independent interest. Our approach generalizes the approximation guarantee to monotone, homogeneous functions and as such we can maximize $\det(\sum_{i\in B} v_i v_i^\top)^{1/d}$, or minimize any norm of the eigenvalues of the matrix $\left(\sum_{i\in B} v_i v_i^\top\right)^{-1} $, with the same running time under some mild assumptions. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem.

Join-preserving maps on the discrete time scale $\omega^+$, referred to as time warps, have been proposed as graded modalities that can be used to quantify the growth of information in the course of program execution. The set of time warps forms a simple distributive involutive residuated lattice -- called the time warp algebra -- that is equipped with residual operations relevant to potential applications. In this paper, we show that although the time warp algebra generates a variety that lacks the finite model property, it nevertheless has a decidable equational theory. We also describe an implementation of a procedure for deciding equations in this algebra, written in the OCaml programming language, that makes use of the Z3 theorem prover.

The class of basic feasible functionals $(\mathtt{BFF})$ is the analog of $\mathtt{FP}$ (polynomial time functions) for type-2 functionals, that is, functionals that can take (first-order) functions as arguments. $\mathtt{BFF}$ can be defined through Oracle Turing machines with running time bounded by second-order polynomials. On the other hand, higher-order term rewriting provides an elegant formalism for expressing higher-order computation. We address the problem of characterizing $\mathtt{BFF}$ by higher-order term rewriting. Various kinds of interpretations for first-order term rewriting have been introduced in the literature for proving termination and characterizing (first-order) complexity classes. In this paper, we consider a recently introduced notion of cost-size interpretations for higher-order term rewriting and see definitions as ways of computing functionals. We then prove that the class of functionals represented by higher-order terms admitting a certain kind of cost-size interpretation is exactly $\mathtt{BFF}$.

We propose \textit{masked particle modeling} (MPM) as a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs for use in high energy physics (HEP) scientific data. This work provides a novel scheme to perform masked modeling based pre-training to learn permutation invariant functions on sets. More generally, this work provides a step towards building large foundation models for HEP that can be generically pre-trained with self-supervised learning and later fine-tuned for a variety of down-stream tasks. In MPM, particles in a set are masked and the training objective is to recover their identity, as defined by a discretized token representation of a pre-trained vector quantized variational autoencoder. We study the efficacy of the method in samples of high energy jets at collider physics experiments, including studies on the impact of discretization, permutation invariance, and ordering. We also study the fine-tuning capability of the model, showing that it can be adapted to tasks such as supervised and weakly supervised jet classification, and that the model can transfer efficiently with small fine-tuning data sets to new classes and new data domains.

The fractional discrete nonlinear Schr\"odinger equation (fDNLS) is studied on a periodic lattice from the analytic and dynamic perspective by varying the mesh size $h>0$ and the nonlocal L\'evy index $\alpha \in (0,2]$. We show that the discrete system converges to the fractional NLS as $h \rightarrow 0$ below the energy space by directly estimating the difference between the discrete and continuum solutions in $L^2(\mathbb{T})$ using the periodic Strichartz estimates. The sharp convergence rate via the finite-difference method is shown to be $O(h^{\frac{\alpha}{2+\alpha}})$ in the energy space. On the other hand for a fixed $h > 0$, the linear stability analysis on a family of continuous wave (CW) solutions reveals a rich dynamical structure of CW waves due to the interplay between nonlinearity, nonlocal dispersion, and discreteness. The gain spectrum is derived to understand the role of $h$ and $\alpha$ in triggering higher mode excitations. The transition from the quadratic dependence of maximum gain on the amplitude of CW solutions to the linear dependence, due to the lattice structure, is shown analytically and numerically.

We provide a framework to analyze the convergence of discretized kinetic Langevin dynamics for $M$-$\nabla$Lipschitz, $m$-convex potentials. Our approach gives convergence rates of $\mathcal{O}(m/M)$, with explicit stepsize restrictions, which are of the same order as the stability threshold for Gaussian targets and are valid for a large interval of the friction parameter. We apply this methodology to various integration schemes which are popular in the molecular dynamics and machine learning communities. Finally, we introduce the property "$\gamma$-limit convergent" (GLC) to characterize underdamped Langevin schemes that converge to overdamped dynamics in the high-friction limit and which have stepsize restrictions that are independent of the friction parameter; we show that this property is not generic by exhibiting methods from both the class and its complement. We further provide asymptotic bias estimates for the BAOAB scheme, which remain accurate in the high-friction limit by comparison to a modified stochastic dynamics which preserves the invariant measure.

北京阿比特科技有限公司