亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Overparametrization is a key factor in the absence of convexity to explain global convergence of gradient descent (GD) for neural networks. Beside the well studied lazy regime, infinite width (mean field) analysis has been developed for shallow networks, using on convex optimization technics. To bridge the gap between the lazy and mean field regimes, we study Residual Networks (ResNets) in which the residual block has linear parametrization while still being nonlinear. Such ResNets admit both infinite depth and width limits, encoding residual blocks in a Reproducing Kernel Hilbert Space (RKHS). In this limit, we prove a local Polyak-Lojasiewicz inequality. Thus, every critical point is a global minimizer and a local convergence result of GD holds, retrieving the lazy regime. In contrast with other mean-field studies, it applies to both parametric and non-parametric cases under an expressivity condition on the residuals. Our analysis leads to a practical and quantified recipe: starting from a universal RKHS, Random Fourier Features are applied to obtain a finite dimensional parameterization satisfying with high-probability our expressivity condition.

相關內容

Bilevel optimization has been applied to a wide variety of machine learning models, and numerous stochastic bilevel optimization algorithms have been developed in recent years. However, most existing algorithms restrict their focus on the single-machine setting so that they are incapable of handling the distributed data. To address this issue, under the setting where all participants compose a network and perform peer-to-peer communication in this network, we developed two novel decentralized stochastic bilevel optimization algorithms based on the gradient tracking communication mechanism and two different gradient estimators. Additionally, we established their convergence rates for nonconvex-strongly-convex problems with novel theoretical analysis strategies. To our knowledge, this is the first work achieving these theoretical results. Finally, we applied our algorithms to practical machine learning models, and the experimental results confirmed the efficacy of our algorithms.

We consider the problem of identification of linear dynamical systems from a single trajectory. Recent results have predominantly focused on the setup where no structural assumption is made on the system matrix $A^* \in \mathbb{R}^{n \times n}$, and have consequently analyzed the ordinary least squares (OLS) estimator in detail. We assume prior structural information on $A^*$ is available, which can be captured in the form of a convex set $\mathcal{K}$ containing $A^*$. For the solution of the ensuing constrained least squares estimator, we derive non-asymptotic error bounds in the Frobenius norm which depend on the local size of the tangent cone of $\mathcal{K}$ at $A^*$. To illustrate the usefulness of this result, we instantiate it for the settings where, (i) $\mathcal{K}$ is a $d$ dimensional subspace of $\mathbb{R}^{n \times n}$, or (ii) $A^*$ is $k$-sparse and $\mathcal{K}$ is a suitably scaled $\ell_1$ ball. In the regimes where $d, k \ll n^2$, our bounds improve upon those obtained from the OLS estimator.

We study the convergence of a family of numerical integration methods where the numerical integral is formulated as a finite matrix approximation to a multiplication operator. For bounded functions, the convergence has already been established using the theory of strong operator convergence. In this article, we consider unbounded functions and domains which pose several difficulties compared to the bounded case. A natural choice of method for this study is the theory of strong resolvent convergence which has previously been mostly applied to study the convergence of approximations of differential operators. The existing theory already includes convergence theorems that can be used as proofs as such for a limited class of functions and extended for wider class of functions in terms of function growth or discontinuity. The extended results apply to all self-adjoint operators, not just multiplication operators. We also show how Jensen's operator inequality can be used to analyse the convergence of an improper numerical integral of a function bounded by an operator convex function.

This work derives upper bounds on the convergence rate of the moment-sum-of-squares hierarchy with correlative sparsity for global minimization of polynomials on compact basic semialgebraic sets. The main conclusion is that both sparse hierarchies based on the Schm\"udgen and Putinar Positivstellens\"atze enjoy a polynomial rate of convergence that depends on the size of the largest clique in the sparsity graph but not on the ambient dimension. Interestingly, the sparse bounds outperform the best currently available bounds for the dense hierarchy when the maximum clique size is sufficiently small compared to the ambient dimension and the performance is measured by the running time of an interior point method required to obtain a bound on the global minimum of a given accuracy.

A recent line of works, initiated by Russo and Xu, has shown that the generalization error of a learning algorithm can be upper bounded by information measures. In most of the relevant works, the convergence rate of the expected generalization error is in the form of $O(\sqrt{\lambda/n})$ where $\lambda$ is some information-theoretic quantities such as the mutual information or conditional mutual information between the data and the learned hypothesis. However, such a learning rate is typically considered to be ``slow", compared to a ``fast rate" of $O(\lambda/n)$ in many learning scenarios. In this work, we first show that the square root does not necessarily imply a slow rate, and a fast rate result can still be obtained using this bound under appropriate assumptions. Furthermore, we identify the critical conditions needed for the fast rate generalization error, which we call the $(\eta,c)$-central condition. Under this condition, we give information-theoretic bounds on the generalization error and excess risk, with a fast convergence rate for specific learning algorithms such as empirical risk minimization and its regularized version. Finally, several analytical examples are given to show the effectiveness of the bounds.

A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Sz\'ekely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure separation between the finite dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally the methodology is applied to two examples; one involves GDP of selected countries and the other is population size of various states in the U.S.A. in the years 1900 -1999.

In this paper we study the finite sample and asymptotic properties of various weighting estimators of the local average treatment effect (LATE), several of which are based on Abadie's (2003) kappa theorem. Our framework presumes a binary treatment and a binary instrument, which may only be valid after conditioning on additional covariates. We argue that one of the Abadie estimators, which is weight normalized, is preferable in many contexts. Several other estimators, which are unnormalized, do not generally satisfy the properties of scale invariance with respect to the natural logarithm and translation invariance, thereby exhibiting sensitivity to the units of measurement when estimating the LATE in logs and the centering of the outcome variable more generally. On the other hand, when noncompliance is one-sided, certain unnormalized estimators have the advantage of being based on a denominator that is bounded away from zero. To reconcile these findings, we demonstrate that when the instrument propensity score is estimated using an appropriate covariate balancing approach, the resulting normalized estimator also shares this advantage. We use a simulation study and three empirical applications to illustrate our findings. In two cases, the unnormalized estimates are clearly unreasonable, with "incorrect" signs, magnitudes, or both.

This work introduces a reduced order modeling (ROM) framework for the solution of parameterized second-order linear elliptic partial differential equations formulated on unfitted geometries. The goal is to construct efficient projection-based ROMs, which rely on techniques such as the reduced basis method and discrete empirical interpolation. The presence of geometrical parameters in unfitted domain discretizations entails challenges for the application of standard ROMs. Therefore, in this work we propose a methodology based on i) extension of snapshots on the background mesh and ii) localization strategies to decrease the number of reduced basis functions. The method we obtain is computationally efficient and accurate, while it is agnostic with respect to the underlying discretization choice. We test the applicability of the proposed framework with numerical experiments on two model problems, namely the Poisson and linear elasticity problems. In particular, we study several benchmarks formulated on two-dimensional, trimmed domains discretized with splines and we observe a significant reduction of the online computational cost compared to standard ROMs for the same level of accuracy. Moreover, we show the applicability of our methodology to a three-dimensional geometry of a linear elastic problem.

We analyze stochastic gradient descent (SGD) type algorithms on a high-dimensional sphere which is parameterized by a neural network up to a normalization constant. We provide a new algorithm for the setting of supervised learning and show its convergence both theoretically and numerically. We also provide the first proof of convergence for the unsupervised setting, which corresponds to the widely used variational Monte Carlo (VMC) method in quantum physics.

For a singular integral equation on an interval of the real line, we study the behavior of the error of a delta-delta discretization. We show that the convergence is non-uniform, between order $O(h^{2})$ in the interior of the interval and a boundary layer where the consistency error does not tend to zero.

北京阿比特科技有限公司