亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by the success of the serial dictatorship mechanism in social choice settings, we explore its usefulness in tackling various combinatorial optimization problems. We do so by considering an abstract model, in which a set of agents are asked to act in a particular ordering, called the action sequence. Each agent acts in a way that gives her the maximum possible value, given the actions of the agents who preceded her in the action sequence. Our goal is to compute action sequences that yield approximately optimal total value to the agents (a.k.a., social welfare). We assume query access to the value $v_i(S)$ that the agent i gets when she acts after the agents in the ordered set $S$. We establish tight bounds on the social welfare that can be achieved using polynomially many queries. Even though these bounds show a marginally sublinear approximation of optimal social welfare in general, excellent approximations can be obtained when the valuations stem from an underlying combinatorial domain. Indicatively, when the valuations are defined using bipartite matchings, arborescences in directed graphs, and satisfiability of Boolean expressions, simple query-efficient algorithms yield $2$-approximations. We discuss issues related to truthfulness and show how some of our algorithms can be implemented truthfully using VCG-like payments. Finally, we introduce and study the price of serial dictatorship, a notion that provides an optimistic measure of the quality of combinatorial optimization solutions generated by action sequences.

相關內容

In performative prediction, a predictive model impacts the distribution that generates future data, a phenomenon that is being ignored in classical supervised learning. In this closed-loop setting, the natural measure of performance named performative risk ($\mathrm{PR}$), captures the expected loss incurred by a predictive model \emph{after} deployment. The core difficulty of using the performative risk as an optimization objective is that the data distribution itself depends on the model parameters. This dependence is governed by the environment and not under the control of the learner. As a consequence, even the choice of a convex loss function can result in a highly non-convex $\mathrm{PR}$ minimization problem. Prior work has identified a pair of general conditions on the loss and the mapping from model parameters to distributions that implies the convexity of the performative risk. In this paper, we relax these assumptions and focus on obtaining weaker notions of convexity, without sacrificing the amenability of the $\mathrm{PR}$ minimization problem for iterative optimization methods.

In group testing, the goal is to identify a subset of defective items within a larger set of items based on tests whose outcomes indicate whether at least one defective item is present. This problem is relevant in areas such as medical testing, DNA sequencing, communication protocols, and many more. In this paper, we study (i) a sparsity-constrained version of the problem, in which the testing procedure is subjected to one of the following two constraints: items are finitely divisible and thus may participate in at most $\gamma$ tests; or tests are size-constrained to pool no more than $\rho$ items per test; and (ii) a noisy version of the problem, where each test outcome is independently flipped with some constant probability. Under each of these settings, considering the for-each recovery guarantee with asymptotically vanishing error probability, we introduce a fast splitting algorithm and establish its near-optimality not only in terms of the number of tests, but also in terms of the decoding time. While the most basic formulations of our algorithms require $\Omega(n)$ storage for each algorithm, we also provide low-storage variants based on hashing, with similar recovery guarantees.

Machine learning systems are often applied to data that is drawn from a different distribution than the training distribution. Recent work has shown that for a variety of classification and signal reconstruction problems, the out-of-distribution performance is strongly linearly correlated with the in-distribution performance. If this relationship or more generally a monotonic one holds, it has important consequences. For example, it allows to optimize performance on one distribution as a proxy for performance on the other. In this paper, we study conditions under which a monotonic relationship between the performances of a model on two distributions is expected. We prove an exact asymptotic linear relation for squared error and a monotonic relation for misclassification error for ridge-regularized general linear models under covariate shift, as well as an approximate linear relation for linear inverse problems.

We propose a sequential, anytime valid method to test the conditional independence of a response $Y$ and a predictor $X$ given a random vector $Z$. The proposed test is based on e-statistics and test martingales, which generalize likelihood ratios and allow valid inference at arbitrary stopping times. In accordance with the recently introduced model-X setting, our test depends on the availability of the conditional distribution of $X$ given $Z$, or at least a sufficiently sharp approximation thereof. Within this setting, we derive a full characterization of e-statistics for testing conditional independence, investigate growth-rate optimal e-statistics and their power properties, and show that our method yields tests with asymptotic power one in the special case of a logistic regression model. A simulation study is done to demonstrate that the approach is robust with respect to violations of the model-X assumption and competitive in terms of power when compared to established sequential and non-sequential testing methods.

Learning policies via preference-based reward learning is an increasingly popular method for customizing agent behavior, but has been shown anecdotally to be prone to spurious correlations and reward hacking behaviors. While much prior work focuses on causal confusion in reinforcement learning and behavioral cloning, we aim to study it in the context of reward learning. To study causal confusion, we perform a series of sensitivity and ablation analyses on three benchmark domains where rewards learned from preferences achieve minimal test error but fail to generalize to out-of-distribution states -- resulting in poor policy performance when optimized. We find that the presence of non-causal distractor features, noise in the stated preferences, partial state observability, and larger model capacity can all exacerbate causal confusion. We also identify a set of methods with which to interpret causally confused learned rewards: we observe that optimizing causally confused rewards drives the policy off the reward's training distribution, resulting in high predicted (learned) rewards but low true rewards. These findings illuminate the susceptibility of reward learning to causal confusion, especially in high-dimensional environments -- failure to consider even one of many factors (data coverage, state definition, etc.) can quickly result in unexpected, undesirable behavior.

Bayesian optimal experimental design is a sub-field of statistics focused on developing methods to make efficient use of experimental resources. Any potential design is evaluated in terms of a utility function, such as the (theoretically well-justified) expected information gain (EIG); unfortunately however, under most circumstances the EIG is intractable to evaluate. In this work we build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the EIG. Past work focused on learning a new variational model from scratch for each new design considered. Here we present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs. To further improve computational efficiency, we also propose to train the variational model on a significantly cheaper-to-evaluate lower bound, and show empirically that the resulting model provides an excellent guide for more accurate, but expensive to evaluate bounds on the EIG. We demonstrate the effectiveness of our technique on generalized linear models, a class of statistical models that is widely used in the analysis of controlled experiments. Experiments show that our method is able to greatly improve accuracy over existing approximation strategies, and achieve these results with far better sample efficiency.

Tie-breaker designs trade off a statistical design objective with short-term gain from preferentially assigning a binary treatment to those with high values of a running variable $x$. The design objective is any continuous function of the expected information matrix in a two-line regression model, and short-term gain is expressed as the covariance between the running variable and the treatment indicator. We investigate how to specify design functions indicating treatment probabilities as a function of $x$ to optimize these competing objectives, under external constraints on the number of subjects receiving treatment. Our results include sharp existence and uniqueness guarantees, while accommodating the ethically appealing requirement that treatment probabilities are non-decreasing in $x$. Under such a constraint, there always exists an optimal design function that is constant below and above a single discontinuity. When the running variable distribution is not symmetric or the fraction of subjects receiving the treatment is not $1/2$, our optimal designs improve upon a $D$-optimality objective without sacrificing short-term gain, compared to the three level tie-breaker designs of Owen and Varian (2020) that fix treatment probabilities at $0$, $1/2$, and $1$. We illustrate our optimal designs with data from Head Start, an early childhood government intervention program.

Adversarial robustness is a key desirable property of neural networks. It has been empirically shown to be affected by their sizes, with larger networks being typically more robust. Recently, Bubeck and Sellke proved a lower bound on the Lipschitz constant of functions that fit the training data in terms of their number of parameters. This raises an interesting open question, do -- and can -- functions with more parameters, but not necessarily more computational cost, have better robustness? We study this question for sparse Mixture of Expert models (MoEs), that make it possible to scale up the model size for a roughly constant computational cost. We theoretically show that under certain conditions on the routing and the structure of the data, MoEs can have significantly smaller Lipschitz constants than their dense counterparts. The robustness of MoEs can suffer when the highest weighted experts for an input implement sufficiently different functions. We next empirically evaluate the robustness of MoEs on ImageNet using adversarial attacks and show they are indeed more robust than dense models with the same computational cost. We make key observations showing the robustness of MoEs to the choice of experts, highlighting the redundancy of experts in models trained in practice.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司