亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Physics informed neural networks (PINNs) have recently been widely used for robust and accurate approximation of PDEs. We provide rigorous upper bounds on the generalization error of PINNs approximating solutions of the forward problem for PDEs. An abstract formalism is introduced and stability properties of the underlying PDE are leveraged to derive an estimate for the generalization error in terms of the training error and number of training samples. This abstract framework is illustrated with several examples of nonlinear PDEs. Numerical experiments, validating the proposed theory, are also presented.

相關內容

學(xue)習(xi)(xi)方法(fa)的泛化能(neng)(neng)力(li)(Generalization Error)是(shi)由該方法(fa)學(xue)習(xi)(xi)到的模(mo)型對未知數(shu)據(ju)的預(yu)測(ce)能(neng)(neng)力(li),是(shi)學(xue)習(xi)(xi)方法(fa)本質上重要(yao)的性質。現實(shi)中采用最多的辦(ban)法(fa)是(shi)通過測(ce)試泛化誤(wu)(wu)差(cha)來評價學(xue)習(xi)(xi)方法(fa)的泛化能(neng)(neng)力(li)。泛化誤(wu)(wu)差(cha)界刻(ke)畫(hua)了學(xue)習(xi)(xi)算法(fa)的經驗風(feng)險與期望(wang)風(feng)險之(zhi)間(jian)偏差(cha)和(he)收(shou)斂(lian)速度。一(yi)個機器學(xue)習(xi)(xi)的泛化誤(wu)(wu)差(cha)(Generalization Error),是(shi)一(yi)個描述學(xue)生機器在(zai)從(cong)樣(yang)品數(shu)據(ju)中學(xue)習(xi)(xi)之(zhi)后,離教師(shi)機器之(zhi)間(jian)的差(cha)距的函數(shu)。

We present a new class of Langevin based algorithms, which overcomes many of the known shortcomings of popular adaptive optimizers that are currently used for the fine tuning of deep learning models. Its underpinning theory relies on recent advances of Euler's polygonal approximations for stochastic differential equations (SDEs) with monotone coefficients. As a result, it inherits the stability properties of tamed algorithms, while it addresses other known issues, e.g. vanishing gradients in neural networks. In particular, we provide a nonasymptotic analysis and full theoretical guarantees for the convergence properties of an algorithm of this novel class, which we named TH$\varepsilon$O POULA (or, simply, TheoPouLa). Finally, several experiments are presented with different types of deep learning models, which show the superior performance of TheoPouLa over many popular adaptive optimization algorithms.

In recent years residual neural networks (ResNets) as introduced by [He, K., Zhang, X., Ren, S., and Sun, J., Proceedings of the IEEE conference on computer vision and pattern recognition (2016), 770-778] have become very popular in a large number of applications, including in image classification and segmentation. They provide a new perspective in training very deep neural networks without suffering the vanishing gradient problem. In this article we show that ResNets are able to approximate solutions of Kolmogorov partial differential equations (PDEs) with constant diffusion and possibly nonlinear drift coefficients without suffering the curse of dimensionality, which is to say the number of parameters of the approximating ResNets grows at most polynomially in the reciprocal of the approximation accuracy $\varepsilon > 0$ and the dimension of the considered PDE $d\in\mathbb{N}$. We adapt a proof in [Jentzen, A., Salimova, D., and Welti, T., Commun. Math. Sci. 19, 5 (2021), 1167-1205] - who showed a similar result for feedforward neural networks (FNNs) - to ResNets. In contrast to FNNs, the Euler-Maruyama approximation structure of ResNets simplifies the construction of the approximating ResNets substantially. Moreover, contrary to the above work, in our proof using ResNets does not require the existence of an FNN (or a ResNet) representing the identity map, which enlarges the set of applicable activation functions.

In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and automatic differentiation (AD) through Taylor series expansion are proposed to allow efficient training with improved accuracy. The computation of differential operators required for PINNs loss evaluation at collocation points are conventionally obtained via AD. Although AD has the advantage of being able to compute the exact gradients at any point, such PINNs can only achieve high accuracies with large numbers of collocation points, otherwise they are prone to optimizing towards unphysical solution. To make PINN training fast, the dual ideas of using numerical differentiation (ND)-inspired method and coupling it with AD are employed to define the loss function. The ND-based formulation for training loss can strongly link neighboring collocation points to enable efficient training in sparse sample regimes, but its accuracy is restricted by the interpolation scheme. The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs, while further improving accuracy by up to 1-2 orders of magnitude relative to ND-based PINNs. For a proof-of-concept demonstration of this can-scheme to fluid dynamic problems, two numerical-inspired instantiations of can-PINN schemes for the convection and pressure gradient terms were derived to solve the incompressible Navier-Stokes (N-S) equations. The superior performance of can-PINNs is demonstrated on several challenging problems, including the flow mixing phenomena, lid driven flow in a cavity, and channel flow over a backward facing step. The results reveal that for challenging problems like these, can-PINNs can consistently achieve very good accuracy whereas conventional AD-based PINNs fail.

In this paper, an abstract framework for the error analysis of discontinuous finite element method is developed for the distributed and Neumann boundary control problems governed by the stationary Stokes equation with control constraints. {\it A~priori} error estimates of optimal order are derived for velocity and pressure in the energy norm and the $L^2$-norm, respectively. Moreover, a reliable and efficient {\it a~posteriori} error estimator is derived. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. In particular, we consider the abstract results with suitable stable pairs of velocity and pressure spaces like as the lowest-order Crouzeix-Raviart finite element and piecewise constant spaces, piecewise linear and constant finite element spaces. The theoretical results are illustrated by the numerical experiments.

Motivated by A/B/n testing applications, we consider a finite set of distributions (called \emph{arms}), one of which is treated as a \emph{control}. We assume that the population is stratified into homogeneous subpopulations. At every time step, a subpopulation is sampled and an arm is chosen: the resulting observation is an independent draw from the arm conditioned on the subpopulation. The quality of each arm is assessed through a weighted combination of its subpopulation means. We propose a strategy for sequentially choosing one arm per time step so as to discover as fast as possible which arms, if any, have higher weighted expectation than the control. This strategy is shown to be asymptotically optimal in the following sense: if $\tau_\delta$ is the first time when the strategy ensures that it is able to output the correct answer with probability at least $1-\delta$, then $\mathbb{E}[\tau_\delta]$ grows linearly with $\log(1/\delta)$ at the exact optimal rate. This rate is identified in the paper in three different settings: (1) when the experimenter does not observe the subpopulation information, (2) when the subpopulation of each sample is observed but not chosen, and (3) when the experimenter can select the subpopulation from which each response is sampled. We illustrate the efficiency of the proposed strategy with numerical simulations on synthetic and real data collected from an A/B/n experiment.

For Ait-Sahalia-type interest rate model with Poisson jumps, we are interested in strong convergence of a novel time-stepping method, called transformed jump-adapted backward Euler method (TJABEM). Under certain hypothesis, the considered model takes values in positive domain $(0,\infty)$. It is shown that the TJABEM can preserve the domain of the underlying problem. Furthermore, for the above model with non-globally Lipschitz drift and diffusion coefficients, the strong convergence rate of order one of the TJABEM is recovered with respect to a $L^p$-error criterion. Finally, numerical experiments are given to illustrate the theoretical results.

In this paper we present results on asymptotic characteristics of multivariate function classes in the uniform norm. Our main interest is the approximation of functions with mixed smoothness parameter not larger than $1/2$. Our focus will be on the behavior of the best $m$-term trigonometric approximation as well as the decay of Kolmogorov and entropy numbers in the uniform norm. It turns out that these quantities share a few fundamental abstract properties like their behavior under real interpolation, such that they can be treated simultaneously. We start with proving estimates on finite rank convolution operators with range in a step hyperbolic cross. These results imply bounds for the corresponding function space embeddings by a well-known decomposition technique. The decay of Kolmogorov numbers have direct implications for the problem of sampling recovery in $L_2$ in situations where recent results in the literature are not applicable since the corresponding approximation numbers are not square summable.

This paper derives confidence intervals (CI) and time-uniform confidence sequences (CS) for the classical problem of estimating an unknown mean from bounded observations. We present a general approach for deriving concentration bounds, that can be seen as a generalization (and improvement) of the celebrated Chernoff method. At its heart, it is based on deriving a new class of composite nonnegative martingales, with strong connections to testing by betting and the method of mixtures. We show how to extend these ideas to sampling without replacement, another heavily studied problem. In all cases, our bounds are adaptive to the unknown variance, and empirically vastly outperform existing approaches based on Hoeffding or empirical Bernstein inequalities and their recent supermartingale generalizations. In short, we establish a new state-of-the-art for four fundamental problems: CSs and CIs for bounded means, when sampling with and without replacement.

An implicit Euler finite-volume scheme for a parabolic reaction-diffusion system modeling biofilm growth is analyzed and implemented. The system consists of a degenerate-singular diffusion equation for the biomass fraction, which is coupled to a diffusion equation for the nutrient concentration, and it is solved in a bounded domain with Dirichlet boundary conditions. By transforming the biomass fraction to an entropy-type variable, it is shown that the numerical scheme preserves the lower and upper bounds of the biomass fraction. The existence and uniqueness of a discrete solution and the convergence of the scheme are proved. Numerical experiments in one and two space dimensions illustrate, respectively, the rate of convergence in space of our scheme and the temporal evolution of the biomass fraction and the nutrient concentration.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

北京阿比特科技有限公司